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Executive Summary 

This deliverable explains the analysis of physiological sensors employed in XR4Drama so far. 
These sensors are embedded on a smart vest and are used in the disaster management 
scenario in order to predict the stress levels of first responders. The physiological sensors are 
suitable for stress detection and activity recognition. The purpose of the deliverable is to 
present the related work in the field of analysis of physiological sensors, especially focused 
on stress detection. Furthermore, this deliverable describes the work done on sensor data 
analysis during the first year of the project. The experiments and relative methodologies 
included, are focused on the first pilot use case, namely a disaster management scenario, 
where the analysis of physiological sensors will ‘track’ the emotional and physical state of 
the first responders. 

The technical part of the sensor data analysis can also be found in the current deliverable. 
This includes the sensors data integration, the creation of databases to store results and 
some details about the communication between components. Experimental results from 
deep learning and machine learning applications reveal the preliminary work on training 
models that will later be deployed in the first prototype. The experimental results included 
here, are a part of the analysis conducted up to the time of the deliverable’s submission. 
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JSON JavaScript Object Notation 
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MAG X-Y-Z Magnetometer measurements on X-Y-Z axis 

ML Machine Learning 
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RF Random Forest 

SC Skin Conductance 

SOTA State-Of-The-Art 

SVM Support Vector Machine 
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VR Virtual Reality 
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1 INTRODUCTION 

The emergence of technology and the availability of a wide variety of wearable sensors allow 
the monitoring of potentially harmful or dangerous situations, offering the opportunity to 
reduce the risk that might occur and increase safety. Distant monitoring through Internet-of-
Things (IoT) systems applies to different domains, like the health domain, where the health 
or mobility of patients is monitored and alerts can inform medical personnel for changes in 
the physical condition of patients or dangerous events like falls. In construction sites, 
wearable sensors are used to monitor the movement of workers and are able to predict and 
prevent unsafe occurrences. Another application of monitoring with wearable sensors is the 
recognition of the emotional state of a subject. This may apply in psychological tests or in 
situations that cause increased stress that needs to be observed. In this deliverable we 
describe the relevant application of xR4DRAMA, where physiological sensors embedded in a 
smart vest, will be used to monitor the stress of first responders in a disaster management 
scenario and recognize their activities.   

The disaster management scenario (PUC1) takes place in Vicenza, Italy and is organized by 
AAWA. PUC1 intends to monitor a flood scenario, where first responders are usually not 
adequately trained to face such real life scenarios, thus they undergo under a lot of stress. 
Wearable smart vests are employed in this pilot to receive the physiological signals of the 
first responders and try to detect their stress levels and the activities they perform. The 
stress of the first responders will be detected both through the physiological sensors and 
audio signals. Here we describe the work conducted on sensor signals’ analysis. In a nutshell, 
training samples of physiological signals were collected by different subjects acting as first 
responders, while performing controlled physical and mental activities indoors. The best 
performing models will be deployed in the first prototype where the first version of the 
xR4DRAMA system will be tested.  
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2 RELATED WORK 

This section reports the current SOTA on stress detection methods based on physiological 
sensors and provides an analysis on the most commonly employed experimental protocols 
for the dataset creation. The first sub-section focuses on the experimental protocol that is 
employed to create stressor tests in order to produce the relevant data for the stress 
detection task. The second sub-section focuses on the best performing methods to tackle 
the task at hand.  

2.1  Experimental protocol on dataset creation  

The affective computing community lacks commonly used standard datasets for wearable 
stress detection. As a result, recent works focus on contributing publicly available dataset for 
stress detection or emotion recognition. These datasets often follow a specific experimental 
protocol which allows for different stress level states to be monitored and captured during 
the data recording. 

Schimdt et al. [1] produced a multimodal, publicly available dataset for stress detection. The 
data has been recorded using two different devices (one chest-based and one wrist-based), 
each including high resolution physiological and motion modalities. This dataset contains 
three different affective states (neutral, stress, amusement). In addition, the dataset 
features self-reported values on the perceived affective state of the subjects, which were 
obtained using several established questionnaires. The experimental protocol behind the 
dataset creation was conducted using two different versions including variations of the 
following stressor states: a baseline condition (neutral affective state), amusement affective 
state, stress inducing state via the well-studied Trier Social Stress Test (TSST) [2] (public 
speaking and mental arithmetic tasks), meditation to ‘de-excite’ and finally a recovery state 
where sensors were removed. 

Moreover, Healey et al. [3] published a dataset on driver stress. This dataset features 
electrocardiogram (ECG), electromyogram (EMG), skin conductance (SC) and respiration 
data, recorded continuously while drivers followed a set route through open roads in the 
greater Boston area. Although stressful events could not be specifically controlled on the 
open road, the route was planned to take the driver through situations where different 
levels of stress were likely to occur, specifically, the drive included periods of rest, highway 
and city driving that were assumed to produce low, medium and high levels of stress. The 
stress evaluation was verified by a driver questionnaire and a two-score derived from 
observable events and actions coded from video tape taken during the drives.   

More recently, Koestra et al. [4] published DEAP, a database for emotion analysis using 
physiological signals. The dataset contains electroencephalogram, facial videos and 
peripheral physiological signals. The data was recorded while the subjects watched 40 one-
minute excerpts from music videos. The final 40 clips were chosen from a larger pool of 
videos, by asking volunteers to rate the clips in terms of their valence and arousal value and 
then choosing the ones that had the strongest rating with the smallest variance. 

Sierra et al. [5] created a dataset for stress detection based on common physiological signals, 
namely EMG, ECG, respiration rate, heart rate (HR) and Galvanic Skin Response (GSR). They 
recorded data from 80 female students. The employed experimental protocol included 
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variations of two main stress inducing tasks, hyperventilation (HV) and talk preparation (TP), 
and two calm inducing baseline tasks (one before the stress test and one after).   

Furthermore, Pourmohammadi et al. [6] recorded a dataset based on two physiological 
signals (ECG and EMG) for stress detection from 34 participants. The participants self-
reported their stress levels by filling the state-trait anxiety inventory (STAI) [7] questionnaire. 
The STAI questionnaire is one of the most popular tools for measuring state-trait anxiety. 
The proposed experimental protocol included two rest states at the start and at end of the 
acquisition and three mental arithmetic tasks in between that had their difficulty increased 
as the time was going on. 

Yuan Shi et al. [8] created a dataset for stress detection based on ECG, GSR, respiration and 
skin temperature. They collected data from 22 participants that were exposed to an 
experimental protocol containing four stressors and six rest periods. The four stressors were: 
one public speaking stressor, two mental arithmetic stressors, and one cold presser stressor. 
These stressors represent the social, mental, or physical challenges that might lead to either 
mental or physical stress. 

Saskia et al. [9] published the multimodal SWELL knowledge work (SWELL-KW) dataset for 
research on stress and user modelling. The dataset includes both physiological signal data 
(ECG and skin conductance) as well as facial expression through a webcam and Kinect 3D 
sensor data. The dataset was collected in an experiment, in which 25 people performed 
typical knowledge work (writing reports, making presentations, reading e-mail, searching for 
information). The authors manipulated the working conditions with the stressors: email 
interruptions and time pressure. The experimental protocol included a calm state where the 
participant could work without interruption and two stress inducing tasks via time pressure 
and interruptions during work. 

Finally, Feng-Tso, et al. [10]  presented an activity-aware mental stress detection scheme 
based on ECG, GSR, and accelerometer data gathered from 20 participants across three 
activities: sitting, standing, and walking. For each activity, the authors gathered baseline 
physiological measurements and measurements while users were subjected to mental 
stressors. The employed stressors were Stroop Color-word interference tests and mental 
arithmetic problems. The experimental protocol included a 10-minute segment of either 
baseline or the two stressor tasks for each of the three activities.  

2.2  Stress detection based on physiological wearable sensors  

The most common stress detection methods based on physiological signals include a feature 

extraction step derived from statistical knowledge over the properties of the signals that 

attempt to describe the various affective states. The extracted features are used to train a 

state-of-the-art machine learning classifier which eventually learns to detect the stress levels 

of the subjects.  A more recent approach attempts to omit the feature extraction step by 

utilizing a Deep Neural Network (DNN) which can do the representation learning of the 

different affective states directly from the physiological signals. 

Schimdt et al. [1] created a benchmark for their publicly available dataset for stress 

detection using a large number of well-known features (extracted from physiological and 

motion signals) and common machine learning methods (Decision Tree (DT), Random Forest 
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(RF), AdaBoost (AB), Linear Discriminant Analysis (LDA) and k-nearest neighbour (kNN)). The 

authors validated their methods on a three-class problem (neutral, stress, amusement) 

achieving 80.34 % accuracy with the AB classifier and on a two-class problem (stress, no 

stress) achieving 93.12 % accuracy with the LDA classifier.  

Rusell Li et al. [11] proposed a novel Deep Learning (DL) based method for stress detection, 

which was trained and evaluated on the same dataset as [1]. This work attempts to address 

the limitation of the handcrafted features that traditional machine learning methods rely 

upon and their potential decrease in accuracy due to misidentification of features. The 

authors designed a novel 1D Convolutional Neural Network (CNN) and a Multi-Layer 

Perceptron (MLP) that take as input the raw physiological signals and do not require hand-

crafted features but instead extract features from raw data through the layers of the neural 

networks. The authors validated their classifiers on both the three and two class problems of 

[1] achieving 97.48 % for the three-class and 99.14 % for the two-class problem.  

Sriramprakash et al. [12] proposed a method for detecting stress during working conditions 

based on feature extraction and machine learning. The authors trained and validated their 

data on the SWELL-KW dataset [9]. They utilized a set of 17 statistical features derived from 

ECG and GSR signals and evaluated on which of them are the most dominant in order to 

increase accuracies. They trained a k-nearest neighbour (kNN) classifier and a Support Vector 

Machine (SVM) classifier. The SVM classifier trained on the dominant selected features 

achieved the highest classification accuracy of 92.75 % for the stress vs no-stress 

classification task.  Another work based on feature extraction and SVM was reported by 

Yuan Shi et al. [8]. The authors proposed a set of 26 handcrafted features derived from ECG, 

GSR, skin conductance and temperature and respiration. They reported an 80% recall over 

the binary classification of stress vs no stress problem.  

Feng-Tso, et al. [10] extracted statistical features from ECG, GSR and accelerometer and 

trained a Decision Tree, Bayes Net, and support vector machine (SVM) classifier for stress 

detection inference combined with physical activities (sitting, standing, and walking). The 

best classification accuracy (92.4%) was obtained from using the decision tree classifier with 

the all-feature combination. 

Keshan et al. [13] proposed an ECG based feature extraction scheme for driver stress 

detection. They trained and evaluated their data on [3]. They utilized a set of 14 statistical 

features derived from ECG signal and found that stress levels can be successfully detected 

from ECG signals alone; with random tree classifier allowing for identification of the three 

classes of stress, low, medium and high, with 88.24% accuracy, and Naïve Bayes for two 

stress levels, low and high, with 100% accuracy. 
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3 SENSOR DATA ANALYSIS  

The sensor data analysis task includes physiological and motion signals as well as processing 
techniques in time and frequency domain. The RUSA device is a portable device for the 
acquisition, treatment and transmission of physiological signals measured through a smart 
sensing vest manufactured by xR4DRAMA’s partner Smartex and is employed in xR4DRAMA 
in order to collect electrocardiograph (ECG) measurements, Inertial Measurement Unit 
(IMU) measurements and respiration measurements data. By being placed on the chest it is 
measuring the participant’s acceleration, the angular rate, and the magnetic field 
surrounding the body in X-Y-Z axis using accelerometer, gyroscope and magnetometer, 
respectively. Thus, the recorded data include both physiological signals and motion analysis 
signals that could be taken into consideration for the estimation of situation awareness.  

The main idea is to analyze the different types of signals by applying signal processing 
techniques aiming to filter noise and extract informative features. The extracted features 
can model the relation between physiological parameters and states of stress, having as a 
goal the estimation of situation awareness and the instantaneous feedback about the 
subject’s activity. As a result, an analysis of the current state-of-the-art (SOTA) on the 
feature extraction methods on physiological and motion signals for the stress detection task 
is required.  

One important issue for the stress detection task is the creation of a dataset recorded with 
the RUSA device which will include different affective states so that the stress detection 
module of xR4DRAMA is trained upon to perform the stress detection. In related work, this 
dataset creation commonly follows some specific experimental protocols which aim to 
create different stressor tests for different stress levels to be monitored. An analysis of the 
most commonly employed experimental protocols for dataset creation is also evaluated. 

3.1  Experimental protocol  

The experimental protocol used to collect the pre-training and training samples, includes 
some mental and physical activities that may cause different feelings, from calmness to 
anxiety, to the subjects. The instructions for these activities are described through a 30 
minutes video, which is shown to the subjects and gives them time to perform the tests. The 
protocol will be explained in more detail in Deliverable 3.4. 

3.2  Sensor data integration 

3.2.1   Sensor data description 

The RUSA data logger device (Figure 1) is a processing unit that is connected to the 
sensorised garment (smartvest) (Figure 2) which is manufactured by Smartex, an xR4DRAMA 
partner. The smartvest is equipped with a series of sensors which provide useful 
measurements for the first responders who are wearing the garment. The sensors are 
connected to the RUSA data logger which processes the physiological signals and transfers 
them to another device (e.g. mobile phone) via a Bluetooth connection. The physiological 
signals can be grouped in the following categories:  
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1.  ECG measurements: The main measurement of this category is the value of the ECG 
signal. Using the ECG signal, the vest software calculates useful physiological 
measurements such as Heart Rate, Heart Rate Variability, and R-R interval distance in 
ECG signal.  

2. IMU measurements: The strap (WWS) is equipped with a “light” IMU measuring only 
the participant’s acceleration in X-Y-Z axis (using an accelerometer), while he/she is 
wearing the strap. The new vest (WWBS) is equipped with one IMU placed on the 
chest which is measuring the participant’s acceleration, the angular rate, and the 
magnetic field surrounding the body in X-Y-Z axis using accelerometer, gyroscope and 
magnetometer, respectively. There are additional two IMUs placed on the arms 
which just send extracted quaternions. These measurements might not be directly 
connected with physiological parameters; however, they can be used in order to run 
Activity Classification algorithms.  

3. Respiration measurements: The strap is also equipped with a piezo resistive point 
placed on the thorax, which is used to measure the strain on the thorax caused by 
the participant’s breathing. The strap uses this measurement to calculate the 
Breathing Rate, and the Breathing Amplitude of the participant.  

4. Activity attributes: Additionally, some measurements are provided about the activity 
the participant performs while wearing the strap. There is a simple activity 
recognition (lying, standing, walking, running). Also, there is a counter measuring the 
number of steps the participant has done while wearing the strap, and the step 
period which shows how fast/slow the steps are being done 

These measurements are summarized in Table 1. 

 

Figure 1. RUSA device. 
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Figure 2. Smartex sensorised garment (smartvest). 

 

Table 1. RUSA device smartvest recorded parameters. 

Recorded parameter Description Values (per 1 unit 
metric) 

Sampling 
rate 

ECG Value Electric signal measuring the ECG 0.8 mV 250Hz 

ECG quality Value ECG signal quality 0-255 (0=poor, 
255=excellent) 

1/5sec 

ECGHR Value Heart rate Beats/minute 1/5sec 

ECGRR Value R-R intervals number of samples 
between R-R peaks 

1/5sec 

ECGHRV Value Heart rate variability ms 1/60sec 

AccX-Y-Z Value Accelerometer in X-Y-Z axes 0.97 10-3 g 25Hz 

GyroX-Y-Z Value Gyroscope in X-Y-Z axes 0.122 °/s 25Hz 

MagX-Y-Z Value Magnetometer in X-Y-Z axes 0.6 µT 25Hz 

RespPiezo Value Electric signal measuring the chest 
pressure on the piezoelectric 
point 

0.8 mV 25Hz 

BR Value Breathing rate Breaths/minute 1/5sec 

BA Value Breathing Amplitude logic levels 1/15sec 

Activity energy Value estimation of energy activity is just an estimation 
(0=no activity, 
255=max of activity) 

1/5sec 

Activity class Value Activity performed 0=other, 1=lying, 1/5sec 
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2=standing/sitting, 
3=walking, 
4=running 

Activity1Pace Value Step period ms 1Hz 

Activity Pace Value Pace steps/min 1/5sec 

Q0-Q1-Q2-Q3 values Quaternions from main electronic 
device (Q0, Q1, Q2, Q3 
components) 

Q14 format 25 Hz 

 

3.2.2   Integration architecture 

The RUSA device transmits the measurements described in  

Table 1 via a Bluetooth connection. The Bluetooth connection takes place with the Mobile 
App which runs on first responders’ mobile devices. As soon as the Mobile App receives the 
data from the RUSA device it transmits them to the physiological signals database (DB) via 
the internet. The physiological signals database is developed using the MongoDB software. 
MongoDB is a source-available cross-platform document-oriented database program. 
Classified as a NoSQL database program, MongoDB uses JSON-like documents with optional 
schemas.  

The physiological signals database is connected with an Application Programming Interface 
(API) that can receive requests and can control the DB in order to provide the corresponding 
data to a specific endpoint. These requests are performed by the Physiological Signals Stress 
Detection Module of xR4DRAMA which in turn predicts the first responder’s stress level at a 
specific timestamp. The stress level results are saved to a different database, the Stress Level 
Results DB, and are also reported to the Knowledge Base (KB) server of xR4DRAMA. The 
Stress Level Results DB is another MongoDB database that is connected with an API that can 
receive query requests per Person ID (unique identifier of first responder wearing the RUSA 
device) and per timestamp (both for a specific timestamp with accuracy in seconds or based 
on a time window with specific starting and ending timestamp). The complete high-level 
architecture of the sensor data integration is presented in Figure 3.   
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Figure 3. Sensor data analysis system architecture. 

 

Integration of Mobile App with RUSA device 

 

The data transmission between the RUSA device and the mobile application is based on the 
Bluetooth protocol. For Bluetooth-enabled devices to connect and exchange data between 
each other, firstly, have to initialize a channel of communication using a pairing process. A 
discoverable device makes itself available for incoming connection requests. A 
BluetoothDevice, a class of android.bluetooth, let’s you create a connection with the 
respective device and receive information about it, such as the name, class, and bonding 
state. In our case the SewDevice from the SewAndroidLibrary, creates a new instance of 
device for the RUSA to establish a connection threat with our mobile device. 

By the moment that the connection is established we have the following device states: 

Idle: It may automatically start to record a new session. 

Streaming: In this state, the sensor device shall send all active channels at a regular interval 
to the master. All sample vectors within a frame should correspond to a same time-frame. 

Recording: The recording state may be active in parallel with the streaming state. While 
recording, the device may keep the Bluetooth module as ready to accept an incoming 
connection, but this mode could be altered by the user. 

The next major functionality is data transmission. The OnDataReceived function handles the 
channels arriving and visualizes the values of the samples to the application interface. The 
main classes here is the SewDataChannel and SewSample with their functions getSamples() 
which gets the list of samples, getChannel() for getting the data channel to which samples 
belong to , getValue() gets the sample value and getTimestamp() gets the sample timestamp 
(in ms). For test the accuracy of the transmission these values are visualized with a textView 
in the app GUI.  



D3.1 – V0.7  

 

Page 16 

 

Integration of Mobile App with the Physiological signals DB 

Once the data from the RUSA device have been received by the Mobile App, they need to be 
forwarded to the physiological signals DB via the internet. This functionality is implemented 
through a direct TCP/IP connection between the Mobile App and the PC server hosting the 
physiological signals DB. The PC server binds a specific IP and PORT for the Mobile App to 
connect to. When the parameters of  

Table 1 are available they are forwarded through the TCP/IP connection. The collection and 
organization of the entries for the MongoDB take place on the server hosting the DB. This 
can be done by utilizing the Python Library Mongo engine. Mongo engine allows the creation 
and handling of a MongoDB collection by creating a model of a database with all the fields 
that need to be stored.  The Mongo engine model can then be called and fill the necessary 
fields with the received physiological signals to create the entries to the DB.  

The Physiological Signals Stress Detection Module of xR4DRAMA evaluates the stress level of 
the first responder that is wearing the garment with the RUSA device at a specific 
timestamp. However, in order for the module to make a prediction, a certain timeframe of 
data needs to be collected beforehand. This timeframe is adjustable and regarding the 
xR4DRAMA’s requirements it has been set to 5s. This timeframe does not hinder the real 
time stress detection capabilities. Thus, the Physiological Signals Stress Detection Module 
produces a result regarding the stress level of the first responder every 5s. The sensor data 
are being analysed at this timeframe. The analysis is performed in real time so no delay is 
imposed on the system. The data measurements described in  

Table 1 are being organized so that they will correspond to this timeframe before they are 
stored in the physiological signals database. For example, 5s of ECG data for the RUSA device 
which utilizes a single lead ECG sensor (singular value per sample) means that the message 
will include 1250 ECG values that match the sensor’s sampling rate (250 Hz) for the specified 
timeframe. The same notion applies to all recorded parameters described in Table 1 each 
according to the sensor sampling rate. The shapes of data for every entry in the physiological 
signals DB according to their sampling rate for the timeframe of 5s are presented in Table 2.  

Table 2. Input shapes of recorded parameters in the physiological signal DB. 

Recorded Parameter Sampling Rate Input shape (per 1 
entry in DB) 

ECG data 250 Hz 1 x 1250 

AccX-Y-Z data 25 Hz 1 x 3 x 125 

GyroX-Y-Z data 25 Hz 1 x 3 x 125 

MagX-Y-Z data 25 Hz 1 x 3 x 125 

RespPiezo data 25 Hz  1 x 125 

Q0-Q1-Q2-Q3 data 25 Hz 1 x 4 x 125 

ECGHR data 1/5 sec 1 x 1 

ECGRR data 1/5 sec 1 x 1 
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BR data 1/5 sec  1 x 1  

Activity Pace data 1/5 sec 1 x 1 

    

Integration of Physiological signals DB with the Physiological Signals Stress Detection Module 

Every request to the DB API returns a package of the sensor data that correspond to the 
specified timeframe. Whenever the collected data from the RUSA device reach the 
timeframe mark an entry is included in the signals DB and their unique DB entry ID is being 
posted on a specific endpoint (e.g., http://160.40.53.24:5100/ids/) which is being requested 
by the Physiological Signals Stress Detection Module. When the Physiological Signals Stress 
Detection Module gets the ID that has already been posted on the endpoint it creates 
another query request to the DB based on the ID. This is a different request to a different 
endpoint (e.g., http://160.40.53.24:5100/entry/sbj1_1_0) which returns the physiological 
signals that are stored in the DB to the Physiological Signals Stress Detection Module in the 
form of a JSON message.  

The development of the API that controls the physiological signals DB and responds to the 
requests made by the Physiological Stress Detection Module has been done in Python via the 
Flask web framework.  Flask is classified as a micro framework because it does not require 
particular tools or libraries. It has no database abstraction layer, form validation, or any 
other components where pre-existing third-party libraries provide common functions. Flask 
provides functionality for building web applications, including managing HTTP requests and 
developing the API behind the application. 

Integration of the Physiological Signals Stress Detection Module with the KB server 

Once the Physiological Signals Stress Detection Module receives data from the physiological 
signals DB the stress detection algorithm evaluates the stress level of the first responder and 
reports the result by posting a JSON message to the KB server. This is done by utilizing the 
Python request library which enables the posting of a JSON file to a specific endpoint. This 
message includes the person’s unique identifier, the current timestamp, the stress level and 
the probability of the predict value (confidence score of the prediction). An example of such 
a message is show bellow: 

 {"personid": "sbj1", "timestamp": "14/09/2021 13:56:46", "stresslevel": "20", "probability": 
"0.9"} 

The stress levels are defined on a scale with 10 levels within the concept of xR4DRAMA (e.g. 
Figure 4). Hence the Stress Detection Module reports the predicted stress level with a value 

representing one of those 10 scales. 

 

Figure 4. Stress level scales within xR4DRAMA. 

The Physiological Signals Stress Detection Module utilize the mongo engine tool to create 
and call a model for the creation of a database that will store all the results produced by the 
Physiological Signals Stress Detection Module. The stress level results DB is connected with 
an API which responds to requests made by person ID (unique identifier of the first 
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responder wearing the vest) or by specific timestamp or by timestamp range (with start and 
end). Here are the three endpoints for the aforementioned tasks: 

 https://160.40.53.24:5200/sensors/stresslevel/id/ <entry_id> . This endpoint returns 
the stress results for the unique identifier of the person wearing the smartvest. Note 
that the entry_id value needs to be given by the system component that is making 
the request. It is a search request by ID. 

 https://160.40.53.24:5200/sensors/stresslevel/result/<timestamp> . This endpoint 
returns the person ID, the timestamp and the stress level and the probability of the 
predicted stress level for the specific timestamp that is being requested. Note that 
the timestamp value needs to be given by the system component that is making the 
request. It is a search request by timestamp. 

 https://160.40.53.24:5200/sensors/stresslevel/<fromTimestamp=X&toTimestamp=Y
> . This endpoint returns the person ID, the timestamp, the stress level and the 
probability of the predicted stress level, for a specific range of timestamps. 

These three endpoints provide the sensor data analysis results to the backend API and the 
frontend tools of the xR4DRAMA project. 

3.3  Sensor data analysis 

The analysis of the physiological sensors aims to a) detect the stress levels of the subject and 
b) recognize their activities. Both machine learning and deep learning algorithms were 
tested for the stress detection, while for the activity recognition only ML was used. During 
the pilot trials in the project, the need is to report the stress near real time and perform 
activity recognition when needed, offline. The methodologies followed are described below, 
separately for activity recognition and stress detection. 

 

3.3.1   Activity recognition 

Only the inertial sensors of the smart vest, namely accelerometer, gyroscope and 
magnetometer, were utilized to recognize the activities conducted. The smart vest itself 
provides an automatic recognition of activity classes based on the energy of the activity. This 
labelling was used as the ground truth.  

Activity recognition applications from wearable sensors have become quite popular in the 
last years in everyday life as well as in monitoring systems for medical use. Inertial sensors, 
especially accelerometer, have proven to be very effective in recognizing daily activities like 
standing, walking, moving upstairs etc, although their performance may be affected by their 
placement or the type of the activity conducted.  

Sensors produce signals that usually contain noise. These initial signals are used to extract 
features, categorized as time and frequency domain, that reduce noise and improve the 
classification results especially when used in machine learning applications.  

 

The typical procedure of an activity recognition pipeline consists of the following steps: 

1. Filtering: this is an optional step that aims to reduce noise 
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2. Feature extraction: the initial signals are used to extract time and frequency domain 
signals that optimize the performance of the later applied classifier 

3. Feature selection: this step is important when many features are extracted. Only the 
variables that contain the most valuable information will be used in the classification 
algorithm. 

4. Application of a classification algorithm: the initial sample is usually split to train and 
test sets. Various algorithms are trained on the training sample and then applied on 
the test set to explore their performance. 

3.3.2   Stress detection from sensors 

For the task of stress detection both ML and DL algorithms were tested. All the physiological 
sensors embedded on the smart vest were used separately and in combination to improve 
the detection of stress levels. In relevant literature, ECG is found to be the most effective 
sensor to measure stress. This was also confirmed by our experimental results.  

In machine learning applications for stress detection from physiological sensors, features 
need to be extracted, similar to the activity recognition applications. Extracted features 
summarize the information included in the signal and make it more exploitable.  
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4 EXPERIMENTAL RESULTS  

In this section we mention some of the experiments performed in samples of physiological 
signals. The valuable information for the end-users is stress detection, however we also 
include some experiments using only the inertial sensors in order to recognize activities. As 
already mentioned, stress will be detected using sensor and audio signals, while for the 
activity recognition only sensor signals will be used. In the current deliverable we include the 
results of deep learning applications on physiological sensors for stress detection and 
machine learning application for activity recognition.  

4.1  Deep learning application on pre-training sample 

4.1.1   Technology 

Deep Learning is the technology employed by the Physiological Signals Stress Detection 
Module to tackle the stress level detection requirements of T3.1. Deep Learning attempts to 
mimic the activity in layers of neurons in the neocortex, the wrinkly 80 percent of the brain 
where thinking occurs. The software learns, in a very real sense, to recognize patterns in 
digital representations of sounds, images, and other data. Deep learning is a subset of 
artificial intelligence and machine learning that uses multi-layered artificial neural networks 
to deliver state-of-the-art accuracy in tasks such as object detection, speech recognition, 
language translation and others. The basic idea—that software can simulate the neocortex’s 
large array of neurons in an artificial “neural network”—is decades old (Figure 5), and it has 
led to as many disappointments as breakthroughs. But because of improvements in 
mathematical formulas and increasingly powerful computers, lately it is possible to model 
many more layers of virtual neurons than ever before. Those highly flexible architectures can 
learn directly from raw data and can increase their predictive accuracy when provided with 
more data. 

 

Figure 5. Evolution of deep learning. 
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Recent Deep Learning architectures are based on the Convolutional Neural Networks (CNN), 
which is a new neural network type, usually used with 2D or 3D inputs. As in conventional 
neural networks, CNNs are also composed of interconnected neurons, the output of which 
depends on their inputs and a set of trainable parameters. Those parameters (often referred 
as “weights”) are multiplied with the inputs and the products are added together to 
calculate the output value of a specific neuron. Neurons are usually organized in successive 
layers, with the neurons of each layer being interconnected with all neurons of the previous 
one. Figure 6 presents a simple 3-layer conventional neural network. 
 

 

Figure 6. Conventional 3-layer neural network. 

 

In CNNs, neurons of convolutional layers are connected only with a subset of the precious 
layer’s neurons, thus having a limited Field of View (FoV). Consequently, the output value of 
each neuron is affected only by the corresponding region of the input. Another key 
difference is the sharing of trainable parameters. In conventional neural networks, each 
neuron has its own distinct set of trainable parameters. In contrast, the neurons of each 
convolutional layer share a common trainable parameter set. This leads to the CNN 
processing all input regions in the same way. As a result, when the input is an image, the 
CNN can detect an object in any place within the image. An example of a simple classification 
CNN is presented in Figure 7. 

 

 

Figure 7. Convolutional Neural Network (CNN) example. 

Prior research on the field of affection recognition has shown that analysing physiological 
signals is a reliable predictor of stress ([1], [5], [6], [8], [11]). T3.1 of xR4DRAMA includes the 
processing of such signals in time and frequency domain. In particular, electrocardiograph 
(ECG), heart rate, heart rate variability, RR peaks, respiration rate and breathing amplitude 
are the types of signals that are taken into consideration for the estimation of situation 
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awareness. Furthermore, T3.1 also includes motion type signals measuring the participant’s 
acceleration, the angular rate, and the magnetic field surrounding the body in X-Y-Z axis 
using accelerometer, gyroscope and magnetometer, respectively. These are also analysed in 
terms of estimation of the situation awareness by analysing the personalised reaction of the 
first responders to the situation. The personalised reaction will be measured by predicting 
the stress level of the first responders. The stress detection tool can assist during a training 
phase or in a simulation of a real scenario by providing data on how the first responders 
react against an emergency and how to deal with the risk. 

The main task of T3.1 is to analyse these different types of physiological and motion signals 
by applying signal processing techniques aiming to filter noise and extract informative 
features that will help to model a stress detection algorithm. However, this goal does not 
necessarily need to rely on the commonly employed combination of hand-crafted features 
with a traditional machine learning method for stress detection analysis, but instead utilize 
the latest deep learning technology to learn directly from the raw data through the layers of 
the neural networks. After all, traditional machine learning methods may show decreases in 
accuracy if features are misidentified.  

For this reason, a custom deep neural network that analyses physiological data collected 
from the RUSA device to perform two tasks is developed within xR4DRAMA.  The first task is 
a 10-class classification problem for stress detection, in which the developed network 
classifies the input physiological signals between the aforementioned 10 scales of stress 
levels (see Figure 4) that have been identified within xR4DRAMA. The second task is a 
regression problem for the prediction of the final stress level score from an input of 
physiological signals, which is a value from 0-100 (see Figure 4). Both neural networks were 
trained and tested on the dataset that was collected within xR4DRAMA. 

Functionality of Physiological Signals Stress Level Detection Module 

The purpose of the Physiological Signals Stress Detection Module is to utilize machine 
learning and deep learning methodologies to automatically analyse the captured data of 
xR4DRAMA’s smartvest in order to estimate the stress level of a first responder wearing the 
vest.  Promising results have been measured on the xR4DRAMA dataset on the task of 
classifying the first responders stress level. A DL architecture that will model the 
physiological signal signatures for 10 different stress scale levels (see Figure 4) is proposed. 
This handles the stress detection task as a 10-class classification problem. The goal of this 
approach is to narrow the error margins by having less targets to predict. Instead of having 
to predict correct in at least 100 different cases which would apply to regressing the correct 
score, the proposed approach has to predict correct in 10 cases. Thus, this approach is 
expected to yield better accuracy.  

Nevertheless, since the stress levels are identified on a scale from 0-100 within xR4DRAMA, 
a different DL architecture that can regress the final stress level score is also proposed. 
Regression is one of the most important and broadly used machine learning and statistics 
tools out there. It allows you to make predictions from data by learning the relationship 
between features of your data and some observed, continuous-valued response. However, 
regression is not only limited to machine learning methods but can also be applied with deep 
learning.  
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The best performing method will be utilized in the xR4DRAMA’s final version. Both 
architectures will learn from the data without any feature extraction step that stems from 
specialized training in physiological signal processing. To achieve such a feat, information 
analysis on the physiological signals is evaluated. In order to approach the stress level 
detection analysis of T3.1, the proposed module will make use of all information available 
from the RUSA device. The available information would be the parameters described in  

Table 1. In particular, the ECG measurements, including the ECG signal and the extracted 
parameters that the RUSA calculates such as the Heart Rate, Heart Rate Variability, and R-R 
interval distance in ECG signal are utilized as input to the proposed module. Furthermore, 
the IMU measurements placed on the chest which is measuring the first responder’s 
acceleration, the angular rate, and the magnetic field surrounding the body in X-Y-Z axis 
using accelerometer, gyroscope and magnetometer, respectively are also utilized as input. 
Finally, the respiration measurements such as the Breathing Rate, and the Breathing 
Amplitude of the participant are also utilized as input.  

The Physiological Signals Stress Detection Module of xR4DRAMA evaluates the stress level of 
the first responder that is wearing the RUSA device at a specific timestamp. However, in 
order for the module to make a prediction, a certain timeframe of data needs to be collected 
beforehand. This timeframe is adjustable and regarding the xR4DRAMA’s requirements it 
has been set to 5s. The reason why the timeframe is chosen to be 5s is because it matches 
most of the RUSA device parameters sampling rates (see  

Table 1) meaning that most of the input data can be processed to meet this timeframe 
criterion before they can be used as input. Furthermore, this timeframe selection is close to 
what is recommended as a standard procedure according to the literature. In most recent 
works the proposed stress detection methods evaluate the stress levels every 5s, 10s or 30s 
([1], [5], [6], [8], [11]). This timeframe does not hinder the real time stress detection 
capabilities. Thus, the Physiological Signals Stress Detection Module produces a result 
regarding the stress level of the first responder every 5s.  

The two DNNs that will be trained based on such samples will output whether stress level of 
the first responder either as one of the 10 classes identified or as a score from 0-100.  The 
two modules functionalities are presented in Figure 8. 
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Figure 8. Physiological Signals Stress Detection Module functionality description. 

 

Architecture of developed Deep Neural Networks 

The basic building block of the Physiological Signals Stress Detection Module is the 

Convolutional Neural Network (CNN) [14]. Driven by the unprecedented success of the 

image recognition, object detection architectures (2D CNNs) ([15], [17], [18], ) and signal 

classification (1D CNNs or Recurrent Neural Networks) [16], the proposed networks are 

designed from scratch based on a similar logic. One recommended DNN architecture based 

on literature that solve the problem at hand is [11]. We differentiate our method based on 

the input data which are different with [11], but the logic behind the DNN architecture is 

similar. Consequently, the proposed method is considered novel and is tailored to the 

xR4DRAMA’s needs and requirements. 

The most important factors that determine the network architecture are the input data 

shapes and the number of inputs. The number of physiological and motion signals that are 

used as input and their input shapes per the selected timeframe of 5s is reported in Table 2. 

The optimal 1D CNN architecture is presented in Figure 9. The ECG signal of size 1250x1 is 

currently used as the single input vector. The input signal goes through three 1D CNN layer 

with 3x3 convolution filters and [8,16,32] feature maps respectively. All three CNN layers are 

followed by a Batch Normalization layer, a Rectified Linear Unit (ReLU) activation [20] and 

Max Pooling layer resulting in an output shape of Nx36x32 at the end of the third CNN block. 

Every CNN block is followed by a dropout layer that closes off half of the activation neurons 

to prevent overfitting [22]. The output feature map of shape Nx36x32 describes the list of 

input signals. This block represents the feature extraction step and those features are 

followed by a fully connected layer with 10 outputs and a softmax activation function which 

is performing the classification task. The result of the fully connected layer will be the output 

of the Physiological Signals Stress Detection Module to the rest of the xR4DRAMA’s system 

components, classifying the input signals between the 10 available stress levels with a 

certain probability asserted by softmax activation function.   
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Figure 9. Proposed architecture for classification using only the ECG 1D input signal. 

 

Experimental results prove that those dimensions are the optimal for higher classification 

accuracies. The proposed DNN is trained from scratch and we use the Xavier initialization 

[21] for the initial weight values. The dropout layers [22] probability is p = 0.5 and is applied 

to prevent overfitting effects. The objective function is set to be the categorical cross-

entropy. We utilize the Adam [19] optimizer with an initial learning rate of 0.001. The 

network was trained for 100 epochs with a batch size of 128.  

Experimental results 

The proposed DNNs for the classification and regression methods were trained on a subset 
of recordings acquired from the experiments performed by xR4DRAMA’s partner AAWA first 
responders. The participants followed the experimental protocol described in Section 3.1  
while wearing the smart vest. A total of 7 end users took part in this data capturing 
campaign.  

In Table 3 the number of samples for a timeframe of 5s per stress scale (10 classes problem) 
are presented. These are the results that the first responders reported after completing each 
stress level test as part of the experimental protocol. It can be seen the last three stress level 
scales does not have any reported samples; thus, the system cannot be trained to predict 
those stress level scales due to the lack of appropriate training data. As a result, the 10-class 
classification problem should be handled as a 7-class classification problem. 
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Table 3. Number of samples for a timeframe of 5s reported by end users per stress level 
scale. 

Stress level Scales 

 0-10 11-
20 

21-
30 

31-
40 

41-
50 

51-
60 

61-
70 

71-
80 

81-
90 

91-
100 

SUM 

User1 - - 27 128 27 135 68 - - - 385 

User2 121 206 26 27 - - - - - - 380 

User3 60 - 37 - 78 180 30 - - - 385 

User4 - 228 - 24 30 66 54 - - - 402 

User5 296 24 - 36 - - 30 - - - 386 

User6 246 78 36 - 30 - - - - - 390 

User7 299 24 36 - -  
 3
0 

- - - - 389 

SUM 1022 560 162 215 165 411 182 - - - 2717 

 

In Table 4 the number of samples for a timeframe of 5s per reported stress level scores 
(stress level regression problem) are presented. These are the results that the first 
responders reported after completing each stress level test as part of the experimental 
protocol. It can be seen that not all scores are represented by the dataset. Thus, it should be 
expected that the trained model will have difficulties predicting all stress level scores (0-
100). Nevertheless, it should not be impossible to see even scores outside of the reported 
scores since this regression model is trained to predict any value from 0-100. 

Table 4. Number of samples for a timeframe of 5s reported by end users (reported stress 
level score). 
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For this version of D3.1 the DNN were trained and tested using only the User1 data from 
Table 3. This recording was available from July 2021 (M9) in order to proceed with 
development and have a prototype version ready by early November 2021 (M13) for the 1st 
project use case. The rest of the data recordings were available on October 2021 (M12) 
which is the due date for D3.1, thus there was not enough time to include them in the 
document. Nevertheless, the new data will be added to refine the available models and the 
results will be reported in D3.7 – Sensor data analysis for situational awareness v2. 

The results of the DNN classifier are summarized in Table 5 and Table 6. Per class precision, 
recall and F1 score metrics are presented in both Tables. Table 5 presents an experiment 
testing on the entire User 1 recording. Table 6 presents an experiment on the test set that 
has been separated from the training procedure. The overall accuracy of the classifier on the 
annotated User 1 recording is 85%. While the overall accuracy of the classifier on the test set 
(20% of the User 1 samples that have been kept away from the training phase) is 43%. 
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Table 5. Per class precision, recall and F1 score for the User 1 recording. 

Stress level  precision  recall  F1 score  samples  

0-10  0.87  0.92  0.89  121  

11-20  0.95  0.83  0.88  206  

21-30  0.64  0.88  0.74  26  

31-40  0.59  0.81  0.69  27 

 

Table 6. Per class precision, recall and F1 score for the User 1 recording. 

Stress level  precision  recall  F1 score  samples  

0-10  0.61  0.58  0.6  24  

11-20  0.62  0.34  0.46  41  

21-30  0.15  0.4  0.22  5  

31-40  0  0  0  5 

 

By testing the classifier accuracy on all 380 samples of User 1 recording we can see that the 
results are looking promising.  However, when we test on the remaining 20% of the data that 
was kept outside of the training procedure, we can see that the accuracy drastically drops 
leading into an overfit problem. As we can see the problem lies specifically on the medium 
stress level classes which have the lowest amount of data. 

4.1.2   Issues and Future work 

One of the biggest issues was the lack of availability of data representing all stress level 

scales. In particular User 1 data only had 4 different stress levels (0-10, 11-20, 21-30, 31-40) 

reported which were mostly low to medium stress levels, so the initial model had limited 

data to work with. This issue was alleviated by the addition of other 6 users who reported 

additional 3 stress levels (41-50, 51-60, 61-70) and the dataset was enriched. However, the 

dataset still lacks data representing the highest stress level scales (71-80, 81-90, 91-100) 

which makes the model unable to predict such high stress level scales. The activities 

performed by the first responders during PUC1 will be recorded when wearing the and due 

to the fact that this will be on field simulation it may trigger higher stress responses to the 

participants. Thus, more relevant data will be utilizing to fine tune the trained stress 

detection model.    

Furthermore, the developed model is to be trained and tested on the complete dataset of 

xR4DRAMA with more participants and more samples for all stress levels. Finally, working on 

the general improvement of the model, it is expected to add more data channels from the 

RUSA device as input and not only the ECG signal. 
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4.2  Machine learning algorithms for activity recognition from inertial 
sensors 

In this section, we refer to the results of the activity recognition based on the inertial 
sensors, namely accelerometer, gyroscope, magnetometer, and quaternion, embedded in 
the smart vest. The activity recognition can be divided into two categories, namely 
recognition of the activity class and the activity energy. The activity class has 5 levels ranging 
from 0 to 4 when the activity’s energy is a continuous value ranging from 0 to 255. For both 
of these categories, we performed feature extraction on the sensors’ data. We applied a 
time window of 5 seconds since the activity labels are reported with a frequency of 0.2 Hz. 
We extracted 48 simple statistical time and frequency domain features resulting in a total of 
192 features. We tested the performance of 4 machine learning algorithms, those being 
Support Vector Machines (SVM), k-Nearest Neighbors (kNN), Random Forest (RF), and 
eXtreme Gradient Boosting trees (XGB), along with fusion and feature selection techniques. 

4.2.1   Recognition of activity class 

For the task of recognizing activity classes, we split the data into training and testing data 
having a testing size of 0.2. We compared the performance of each modality alone and 
various early and late fusion strategies. For early fusion, we performed concatenation, and 
for late fusion, we tested averaging, product of probability, maximum probability, and 
majority voting.  

The averaging technique is described by equation 1: 

𝑝𝑖 =
1

𝑁
∑ 𝑝𝑖,𝑗

𝑁

𝑗=1

                           (1)  

where 𝑝𝑖,𝑗 is the probability of the 𝑖 class of the 𝑗 modality, 𝑁 is the total number of 

modalities, and 𝑝𝑖 is the average probability of the 𝑖 class across all modalities. The final 
decision is performed by locating the class with the maximum probability. 

The product technique is described by equation 2: 

𝑝𝑖 = ∏ 𝑝𝑖,𝑗

𝑁

𝑗=1

                            (2)  

where 𝑝𝑖,𝑗 is the probability of the 𝑖 class of the 𝑗 modality, 𝑁 is the total number of 

modalities, and 𝑝𝑖 is the product probability of the 𝑖 class across all modalities. The final 
decision, again, is performed by locating the class with the maximum probability. 

For the maximum probability technique, we find the class with the highest probability across 
all modalities, and for the majority voting, we find the class that has been predicted more 
times across all modalities. 

The results of the fusion techniques can be seen in Table 7. From the Table it can be seen 
that the classifier performing the best is the XGB classifier, achieving an accuracy score of 
85,11% when using the concatenation fusion technique. The best performing single modality 
is the accelerometer, achieving an accuracy score of 84,56%. 
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Table 7. Accuracy score of the activity class prediction using fusion techniques. 

 Acc Gyro Mag Quat Concat Averaging Prod Max 
prob 

Maj. 
Vote 

SVM 0.7960 0.7996 0.8051 0.7960 0.8051 0.7996 0.8015 0.7941 0.7960 

kNN 0.8051 0.7886 0.7904 0.7868 0.7904 0.8015 0.8015 0.7941 0.7960 

RF 0.8272 0.8088 0.8162 0.8162 0.8235 0.8033 0.8015 0.7960 0.7960 

XGB 0.8456 0.7996 0.8088 0.7978 0.8511 0.8015 0.8033 0.7941 0.7960 

 

It is worth mentioning that from a total of 544 samples, the 433 had the same label, that 
being 2, which stands for sitting/standing. So an accuracy score of 79,6%, even though it 
seems high, it predicts everything as class 2. In the Table, the numbers colored in red 
represent such cases where a classifier predicts every single class as 2. 

For the feature selection technique, we applied three methods, being Recursive Feature 
Elimination (RFE), Principal Component Analysis (PCA), and Genetic Algorithm (GA) based 
feature selection. Results of the feature selection techniques can be seen in Table 8. From 
the Table, we can conclude that XGB is again performing the best having an accuracy score 
of 87,13% when using the GA technique, while the RFE technique resulted in all classifiers 
predicting every class as 2. 

Table 8. Accuracy score of the activity class prediction using feature selection techniques. 

 RFE PCA GA 

SVM 0.7960 0.8107 0.8051 

KNN 0.7960 0.8107 0.8070 

RF 0.7960 0.8107 0.8419 

XGB 0.7960 0.8107 0.8713 

4.2.2   Recognition of activity energy 

Since the activity class labels are imbalanced (most of the cases are labeled as 2), we also 
performed an activity energy recognition. Since the activity energy is not a discrete value, we 
performed regression analysis in the activity energy levels. For fusion techniques, we again 
used concatenation for early fusion, while we performed two late fusion techniques, mean 
and median of the prediction of each modality. For evaluation, we used the mean squared 
error evaluation metric, after normalizing the activity energy level values to the range from 0 
to 1. 

Results of the fusion techniques can be seen in Table 9. The combination of concatenation 
and XGB classifier is again having the best result, with a mean squared error of 0,0074. Also, 
the best performing single modality is again the accelerometer, having a mean squared error 
of 0,0081 when using the RF classifier. 
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Table 9. Mean squared error of the activity energy prediction using fusion techniques. 

 Acc Gyro Mag Quat Concat Mean Median 

SVM 0.0291 0.0298 0.0332 0.0336 0.0332 0.0283 0.0315 

KNN 0.0261 0.0231 0.0255 0.0335 0.0255 0.0214 0.0220 

RF 0.0081 0.0186 0.0225 0.0231 0.0077 0.0150 0.0166 

XGB 0.0084 0.0183 0.0239 0.0271 0.0074 0.0142 0.0154 

 

For feature selection, we applied the same methods. The results are presented in Table 10. 
From the Table, it can be seen that the GA technique outperforms the rest of the feature 
selection techniques, with XGB again being the best performing classifier, with a mean 
squared error of 0,0048. 

Table 10. Mean squared error of the activity energy prediction using feature selection 
techniques. 

 RFE PCA GA 

SVM 0.0309 0.0311 0.0218 

KNN 0.0077 0.0255 0.0185 

RF 0.0067 0.0217 0.0076 

XGB 0.0076 0.0244 0.0048 
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5 CONCLUSIONS  

This deliverable described the experiments and findings of the first period of the project 
regarding the analysis of sensor data, aiming to detect stress and recognize activities. For the 
task of stress detection, all physiological sensors embedded in the smart vest were used. The 
experiments conducted showed better performance of the ECG signal alone, which is in line 
with relevant literature. A subset of the sensors was used for the activity recognition, which 
in that stage of the project was not expected to provide good results, since most of the 
activities performed were static. 

In order to train well performing models, data need to be collected from as much subjects as 
possible, so the training sample will have a variety of signals addressed to different stress 
levels. Currently, more data have been collected for sensor analysis and will be used to train 
and find the best performing models that will be deployed in the first prototype.  
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