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Abstract 

This deliverable describes the initial versions and outcomes of the stress level detection component 
of xR4DRAMA developed in T3.4 of WP3. This component is responsible for developing body sensor-
based and/F1 audio signal-based technologies for the assessment of the stress level experienced by 
actors in a situation. The results of the audio and sensor modules will later be merged to obtain one 
unique stress prediction.  
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Executive Summary 

This deliverable describes the initial versions and outcomes of the stress level detection 
component of xR4DRAMA developed in T3.4 of WP3. This component is responsible for 
developing body sensor-based and audio signal-based technologies for the assessment of 
the stress level experienced by actors in a given situation. The results of the audio and 
sensor modules will later be merged to obtain one unique stress prediction.  
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1 INTRODUCTION 

The stress level detection component of xR4DRAMA, developed in T3.4 of WP3, is 
responsible for developing body sensor-based and audio signal-based technologies for the 
assessment of the stress level experienced by actors in a situation.  

The audio-based stress detection system is designed to work with voice recordings from 
different sources, in particular phone calls (from citizens to emergency numbers) and voice 
messages from first responders (FRs). In addition, the stress level of the first responders will 
also be assessed through physiological signals measured through a smart sensing vest 
developed to collect electrocardiograph, inertial measurement unit and respiration 
measurements data. The results of the audio and sensor modules will later be merged to 
obtain one unique stress prediction.  

The position of the stress level detection component in the xR4DRAMA architecture is 
depicted in Figure 1. 

 

 

Figure 1: The stress level detection component in the xR4DRAMA architecture. 

 

In this deliverable, we describe the regression model for the analysis of physiological sensors 
for stress detection, the current baseline system to detect audio-based stress, and the fusion 
technique that will be deployed in the first prototype for combining the results of the audio 
and sensor modules regarding stress. We also describe the experiment we have designed to 
produce our own dataset.  
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2 BODY-SENSOR BASED TECHNIQUES 

In this chapter, the regression analysis of physiological sensors for stress detection is 
described. The overall task of stress detection also includes classification experiments, which 
are mentioned in Deliverable 3.1. The regression model is chosen to be deployed in the 
prototype. First, we present relevant related work and the physiological data acquisition 
module we have developed for xR4DRAMA. 

2.1  Related work 

Stress detection by using different modalities has been studied widely recently and is usually 
based on physiological signals. A well-known publicly available dataset for stress detection 
from multimodal physiological signals is the WESAD dataset (Schmidt et al, 2018). It consists 
of wrist- and chest-worn devices containing the following modalities: blood volume pulse, 
electrocardiogram (ECG), electrodermal activity (EDA), electromyogram (EMG), respiration 
(RSP), body temperature, and three-axis acceleration. Fifteen subjects have been received 
interchanged stimuli for amusement and stress conditions. Multiple works have been based 
on the WESAD dataset for building stress detection systems. In the work of (Bobade and 
Vani, 2020) multiple machine learning and a simple deep learning method have been 
assessed for stress detection. Their results show superiority of the deep learning method, 
which achieved an accuracy of 95.21% for binary classification of stress. In (Indikawati and 
Winiarti, 2019) only the wrist data were used to build a personalized stress detection 
system. Three different machine learning methods were used: namely, Logistic Regression 
(LR), Decision Tree (DT), and Random Forest (RF). The RF classifier achieved the higher 
results, which were 88%-99% accuracy between the subjects. The author in (Siirtola, 2019) 
conducted experiments to find the optimal set of sensors to build a commercial smartwatch 
to detect stress levels. In this line, using only the wrist data, they performed feature 
extraction as described in (Smidt et al, 2018) and performed experiments using different 
modality combinations. By applying leave-one-out validation, they resulted in 87.4±10.4% 
accuracy when using Linear Discriminant Analysis (LDA) classifier and the temperature, blood 
volume pulse and Heart Rate (HR) modalities. 

Apart for deploying only physiological signals from wearable devices, other solutions include 
the fusion of physiological signals along with behavioural data. In the work of (Walambe et 
al., 2021), a combination of HR variability, skin conductance, camera recordings, body 
postures, and computer interactions has been proposed. The system aims to detect stress 
due to workload. The authors proposed two different fusion methods, early and late fusion, 
both based on neural networks. Results revealed that the early fusion method achieves the 
best accuracy score up to 96.09%. In (Aigrain et al., 2016) HR, Galvanic Skin Resistance (GSR), 
EMG, RSP, skin temperature and video modalities were deployed for stress detection during 
mental arithmetic tasks. In this work three different methods were used to assess the stress 
levels of the subjects: self-assessment, external assessment from other subjects, and 
assessment from experts. The system is based on extracting facial, posture, and physiological 
features and using Support Vector Machines (SVM) classifier, achieving 85.5% F1-score1. The 

 

1 F1-score is a measure to test the accuracy. It is the harmonic mean of precision and recall.  
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authors in (Giakoumis et al., 2021) used GSR, ECG, accelerometer, body movement, head 
position, posture, and occurrence of specific gestures to detect stress using the Stroop Color 
and Word Test (SCWT)2 as stimuli. Behavioural and physiological features were extracted 
from the different modalities and, when using LDA classifier, a total of 100% accuracy was 
achieved. 

2.2  Data acquisition 

In the xR4DRAMA platform, a physiological data acquisition module is expected with the aim 
to acquire physiological data to monitor the stress level of First Responders (FRs) in the field 
for the Disaster management use case. The textile sensing platform architecture (shown in 
Figure 2) includes the following sensing parts, which are explained in more detail in 
Deliverable 3.1: 

● two textile electrodes to acquire ECG signal; 
● one textile respiratory movement sensor (Respiration signal); 
● one jack connector to plug the garment to the electronic device; 
● one pocket to hold the portable electronic during the activity. 

 

Figure 2: Wearable sensing platform architecture 

 

 

2 The tasks that shows the delay in reaction time when there is a mismatch between the name of a 

color and the color it is printed on. 

Jack Connector 

Textile respiratory movement sensor 
(Positioned behind the logo) 

ECG Textile Electrodes 
(Inner part of the garment) 

RUSA Device 
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The wearable system is also able to detect the trunk movements and the posture trough an 
Inertial platform (Accelerometers, Gyro and IMUs sensors) integrated in the portable 
electronic device (RUSA). The wireless transmission is achieved by Bluetooth module, that is 
the WT12, a standard Bluetooth 2.1 module produced by Bluegiga Technologies. 

The acquired signals can be analysed separately or combined. For the individual analysis of 
the sensors, the framework that will be adopted is the following: 

● extracting the raw measurements, online or offline, depending on whether the 
analysis will be in real time or not; 

● filtering of the raw signals; 
● extracting relevant features. The features depend on the initial signal; 
● feeding of the features to a classifier to detect stress or activities. 

The sampling rate of raw signals are listed in  Table 1. 

Table 1: Sampling rate of Raw signals 

Name Sampling rate (Hz) 

ECG 250 
Respiration 25 
Inertial platforms 25 

 

2.3  Data analysis 

For the sensor-based stress detection, we used the ECG, RSP, and Inertial Measurement Unit 
(IMU) sensors. The IMU sensors include the accelerometer, gyroscope, magnetometer, and 
quaternion sensors. Feature extraction was applied to all these sensors. The features were 
extracted using a 60-second window with 50% overlap. We used the data of all subjects that 
were monitored. In total 94 heart rate, 28 respiration rates, and 192 IMU (16 per single-axis 
data) features were extracted for a total of 314 features. The HR features include statistical 
and frequency features regarding the signal and the R-R intervals3, along with HR variability 
features. The respiration features include statistical and frequency features of the signal, 
breathing rate, and breath-to-breath intervals. The IMU features include simple statistical 
and frequency features from the IMU signals. 

After extracting the features, the data were split into train and test with an 80/20 ratio. We 
applied four different ML algorithms; namely SVM, k-Nearest Neighbors (kNN), RF, and 
eXtreme Gradient Boosting trees (XGB) to perform regression of the stress level since the 
stress level is a continuous variable. The evaluation was performed by computing the Mean 
Squared Error (MSE) metric. Before computing the MSE we normalized the values of stress 
level to be in the range of 0 to 1. We tested each modality alone, all different combinations 
of modalities in early level fusion and two late level fusion methods: mean and median. 
Results on the different fusion methods can be seen in Table 2. As we show in the table, the 
concatenation of all features when using the XGB algorithm has the best result reaching a 
MSE of 0.073. 

 

3 The physiological phenomenon of variation in the time interval between heartbeats.  
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Table 2: Results of early and late fusion methods for stress detection 

 HR RSP IMU HR + 
RSP 

HR + 
IMU 

RSP + 
IMU 

HR + 
RSP + 
IMU 

Late 
mean 

Late 
median 

SVM 0.1709 0.1530 0.1305 0.1723 0.1306 0.1305 0.1305 0.1412 0.1363 

kNN 0.1439 0.1553 0.1107 0.1285 0.1106 0.1106 0.1107 0.1170 0.1125 

RF 0.1113 0.1280 0.0918 0.1073 0.0916 0.0871 0.0886 0.0984 0.1025 

XGB 0.1237 0.1307 0.0844 0.1092 0.0835 0.0858 0.0730 0.0958 0.1006 

 

Apart from using fusion methods, we also applied feature selection methods. For feature 
selection, we used Recursive Feature Elimination (RFE) with RF as the base algorithm, 
Principal Component Analysis (PCA) with 20 components, and Genetic Algorithm (GA) based 
feature selection. The results of the different feature selection methods can be seen in Table 
3. Results reveal that GA has the best performance when combined with the XGB algorithm 
achieving a MSE of 0.0567. The best score out of all experiments was the GA with the XGB 
algorithm. 

Table 3: Results of feature selection methods for stress detection 

 RFE PCA GA 

SVM 0.1052 0.1201 0.1305 

kNN 0.1023 0.1106 0.1106 

RF 0.0790 0.1044 0.0742 

XGB 0.0772 0.0953 0.0567 
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3 AUDIO-SIGNAL BASED TECHNIQUES 

Speech is a powerful biosensor; it is produced by a complex combination of physical and 
cognitive processes.  

Despite this richness, voice recording is a non-intrusive and ubiquitous sensor that nowadays 
is becoming very accessible with the usage of smartphones. Speech contains many levels of 
information, from voice quality to the content of the speech itself. The analysis of these 
different information levels (some of them more intrusive than others) can bring indirect 
monitoring of some physiological and cognitive states of the user. One of these states that 
can be extracted is the stress level of the user. 

“Stress can be defined as the reaction that people may have when they are subject to 
demands and pressures which do not correspond to their knowledge and abilities and that 
can challenge their ability to cope. Stress occurs in a wide range of [work] circumstances but 
is often made worse when employees feel they have little support from supervisors and 
colleagues, as well as little control over work processes.  

Pressure at the workplace is unavoidable … and may even keep workers alert, motivated, 
able to work and learn.... However, when that pressure becomes excessive or otherwise 
unmanageable it leads to stress. Stress can damage an employees' health and the business 
performance.”4 

In the last decade there have been different works that try to extract the stress level from 
voice. The techniques used have evolved during these years, first because they can use 
smartphones to capture the audio and second because they are incorporating deep learning 
techniques. 

In xR4DRAMA we follow a similar evolution. First, we start with a baseline based on classical 
schema to dig into deep learning in the following months of the project. 

3.1  System integration 

The audio-based stress detection system is designed to work with voice recordings from 
different sources, in particular phone calls (from citizens to emergency numbers), voice 
messages from FRs, and possibly other voice recordings from FRs that are recorded through 
the mobile phone that is used also to collect the sensor data described in Section 2. 

The stress detection system works on audio files of variable but finite length (e.g., 30 
seconds or longer) and can be called through a REST-like API. For each audio file, it returns a 
stress level estimation between 0 and 1, along with some metadata (such as the timestamp, 
etc.). 

To use the stress detection system on long audio recordings or continuous audio streams, 
these will need to be previously split into separate audio files (e.g., using sliding time 
windows) to obtain a numeric prediction for each of these segments. This is not handled as 
part of the stress detection system itself and will need to be implemented separately 
according to the source of the voice recording. 

 

4 https://www.who.int/news-room/q-a-detail/ccupational-health-stress-at-the-workplace  

https://www.who.int/news-room/q-a-detail/ccupational-health-stress-at-the-workplace
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The results of the audio-based stress detection are then combined with the sensor-based 
estimations to produce an integrated estimate of the stress level. This combination is 
performed by a separate fusion component that is also in charge of communicating with the 
rest of the xR4DRAMA platform to make the results available as needed (as described in 
Section 4). 

3.2  Current baseline system 

The current baseline system to detect stress, displayed in Figure 3, is based on a classical 
Machine Learning (ML) schema with the following steps: 

• Speech processing and feature extraction: the speech is processed using a Praat5 
script that extracts a set of acoustic and voice quality features. 

The acoustic features are the following: the frequency of the voice fundamental  (F0) 
and its standard deviation, max value of F0, min F0, range of F0, F0 slope and 
intensity, ratio of pauses, average pause length, speech rate, articulation rate, 
average syllable duration, and effective duration of the speech. Rate features were 
based on the algorithm proposed by de Jong6 without using transcriptions to keep 
them as acoustic features measured in a language-independent way (and avoiding 
ethical issues).  

Voice quality features were also provided by Praat and included all jitter and 
shimmer available measurements: jitter_loc, jitter_abs, jitter_rap, jitter_ppq5, 
jitter_ddp, shimmer_loc, shimmer_dB, shimmer_apq3, shimmer_apq5, 
shimmer_apq11, and shimmer_dda, plus the following harmonicity-based features: 
harmonicity autocorrelation, noise-to-harmonics ratio (NHR) and harmonics-to-noise 
ratio (HNR). 

• Training: the features extracted can then be used to train a ML model. But to do so, a 
set of train data is needed. The train data must be composed of some audio 
recordings with an annotation of the corresponding stress level. Due to privacy issues 
and as voice can be considered a biomarker, it’s difficult to find open train sets 
available for research. So before having a model a set of train data is needed. Some 
actions were conducted to obtain this training data. 

 

Figure 3: Current baseline system to detect stress 

 

5 https://www.fon.hum.uva.nl/praat/ 
6 https://link.springer.com/article/10.3758/BRM.41.2.385 
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3.2.1   Training data 

AAWA and DW, the two user partners participating in the project, provided some audio 
recordings obtained from some real scenarios. These audios were a good starting point to 
understand and evaluate some of the extra difficulties that must be considered when 
developing the system, basically: noise (from the environment where the user is talking and 
audio quality of the devices used to transmit the speech), the kind of messages (duration, 
content), and speaker variability (professionals, external users). However, this data was not 
annotated with any stress level indicator, nor did it contain any biological signals (EGG or 
Breath), so it was insufficient to be used to train or evaluate the system. 

As part of the xR4DRAMA project, it was planned to collect training data, in a controlled 
experiment that would consider all the project needs, which include some physical and 
psychological stressors, containing all the data that will be available afterwards (speech and 
body-sensors) and the stress levels (self-reported by the users). The experiment is described 
in the next section and is currently underway, so the data was not available to train a 
system.  

In April 2021, and as part of the ACM International Multimedia Conference, the MuSe 
(Multimodal Sentiment) Challenge7 increased the challenge to include stress detection. From 
the xR4DRAMA consortium we were aware of this data too late to participate in the 
challenge, but we could subscribe and get the data. The Muse Dataset is composed of 6 
hours of speech annotated with valence and arousal levels, every 0,5 seconds. The stress 
level is associated with a high value of Arousal (Activated) and an Unpleasant value of 
Valence (low value).  

3.2.2   Baseline system 

A first system trained on the Muse dataset and using the classical schema of feature 
extraction and train a Super Vector Regression (SVR) obtained a Concordance Correlation 
Coefficient (CCC) of 0.16, much lower than the baseline system of the MuSe Challenge 
(0.49), which used voice and other physiological measurements like EGG and respiration and 
BPM signals. Half of the participants did not beat the baseline and all the solutions adopted 
used deep learning, indicating that this is the way to go (as already stated in the project). 

The system (adapted to the MuSe Challenge requirements)  produces a prediction of valence 
and arousal every 0.5 seconds. To do so, it follows the next steps: 

1. For each period (0.5 seconds), it extracts the last 10 seconds of sound. 
2. These 10 seconds are then analyzed to extract the sound features, using the Praat 

script, as described above. 
3. All the features vectors obtained from all the audio signals, were expanded with the 

corresponding arousal and valence values. 
4. A SVR for Valence and another for Arousal were trained.  

From the first analysis performed on this dataset we saw that the 0.5 seconds is a too short 
period, for two reasons: if we check the desired output, the stress level of the user does not 

 

7 https://www.muse-challenge.org/ 
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change so quickly, and if we check the inputs, the prosodic features need more than 0.5 
seconds to be evaluated. For this reason we used different windows and observed that 
longer windows (up to 10 seconds) were improving the results. Finally we also observed that 
each user has very different parameters, and for this reason we think that for known users it 
can be useful to have a reference signal of their basal state, and then compare the incoming 
audios with this basal state to better adjust the predictions. 

3.3  Training data 

As already mentioned, to train any system, data is needed, and at the beginning of the 
project we observed the need to produce some training data.  Once we got knowledge 
about the MuSe data, we evaluated the need to still produce our own dataset. And we 
arrived at the conclusion that differences on the experiment design could be crucial in 
adapting (maybe fine tune) the system to the xR4DRAMA needs. 

The MuSe dataset is composed of 69 job interviews. To stress the users, after a brief period 
of preparation, the subjects are asked to give an oral presentation, within a job-interview 
setting.  

We thought that for the xR4DRAMA use cases the stressing situation should also include 
some physiological stressors, because first responders are often under psychological and 
physiological stress. For this reason, the experiment to collect data was design using known 
stressors for both aspects (physiological and psychological). The stressors selected are:   

• Psychological:  
o The colors challenge. The user is presented with some slides with some words 

written in different colors (Figure 4) and, in a short period of time, must spell 
out the color in which the words are written. The challenge is that the words 
are color names, producing a confusion.   

 

 
Figure 4: Colour change challenge 

 
o Explain how it has been the day. This is not a stressing challenge, but it is used 

to get different stress values. 
o Listen to relaxing music. 
o From rom 1324, subtract from 17 to 17. If the user makes a mistake, he/she 

must start over. 
o Explain a stressful situation in your life. 
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• Physiological 
o Put a hand in cold water (2º C) for two minutes, make a pause, and put it 

again. 
o Go upstairs for 4 levels and down again 
o Tie and untie their shoes (after the exercise) 

The different challenges were combined so that the user talks while performing some of the 
physiological challenges. At different moments in time the user is asked to report the stress 
level he/she feels.  

To record the experiment a video was done (translated to Italian) so that all users follow the 
same sequence with the same timings.   
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4 FUSION MODULE 

The results of the audio and sensor modules regarding stress will later be combined, to 
receive a more accurate result on the stress level. The fusion technique of averaging 
predictions was selected as the most appropriate since the audio and sensor signals will not 
be equal in sizes. The results of the two modalities will be combined in time periods were 
there were both audio and sensors’ input. Let 𝑆𝑥 be the predicted stress level based on 
sensors and 𝐴𝑥  be the predicted level of stress based on audio, with the stress levels ranging 
from 0 to 100. Then the result of fusion for the 𝑥 case will be:  

 

𝐹𝑥 =
𝑆𝑥 + 𝐴𝑥

2
 

 

 



D3.4 – V1.0 

  

 

Page 19 

5 CONCLUSIONS 

In this deliverable, we have presented the methods that we have developed for both body 
sensor-based and audio signal-based stress level detection and the technique to combine 
them that will be used in the first prototype. 

Regarding physiological sensor-based detection, a regression model is chosen to be 
deployed in the prototype. For voice-based stress detection we start with a baseline based 
on classical schema to dig into deep learning in the following months of the project. In the 
next version, we will present this new approach and the results we achieve for stress 
detection, combining both techniques, using our own dataset.  
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