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Abstract 

This deliverable documents on the image-based 3D reconstruction service of the xR4DRAMA 
platform, which is developed as a tool for the users in the office – pre-emergency users of 
PUC1 and journalists and production managers of PUC2 to build photorealistic 3D models from 
aerial images. The service also works for carefully taken ground level images. The 3D models 
with photographic texture are optimized for use in the Authoring tool and the Virtual Reality 
tool. The models are simplified, georeferenced, and automatically imported in a Unity server 
to create asset bundles for maximum performance in VR. 
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Executive Summary 

This deliverable reports the results of the activities carried out in the frame of WP4, regarding 
the 3D reconstruction of outdoors areas from image or satellite data. It goes with the 
completion of task T4.4 and documents the workflows, the algorithms and the online service 
that was developed in order to generate high fidelity 3D models of urban and country areas.  

Its first part is dedicated on image-based 3D reconstruction by means of a fully automated 
Structure-From-Motion (SfM) approach. The second part presents the combination of Satellite 
images and available DEMs for the rapid extraction of the landscape of larger areas. All 3D 
models are complemented with photographic texture and are optimized for use in the 
Authoring tool and the Virtual Reality tool.  

All terrain/ 3D models are geo-referenced and added to layers of a 3D GIS (T5.3), to fuel the 
AR geo-localization algorithm for visual and GIS-assisted navigation and the VR environment 
in WP4.  
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Abbreviations and Acronyms 

API Application Programming Interface 

AR Augmented Reality 

DEM Digital Elevation Model 

GIS Geographic Information System 

GPS Global Positioning System 

MVS Multi-View Stereo 

PUC Pilot Use Case 

RANSAC RANdom SAmple Consensus 

SLAM Simultaneous Localization And Mapping 

SfM Structure from Motion 

UAV Unmanned Aerial Vehicle 

VR Virtual Reality 
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1 INTRODUCTION 

The xR4DRAMA 3D reconstruction service consists of two separate web services. The first 
service is responsible to generate photorealistic 3D mesh models from a series of overlapping 
images, typically captured from drones but it can also handle carefully taken ground level 
images from a handheld camera or a mobile phone (Task T2.2 – Space sensing using drones 
and cameras). The second can be conceived as an extension of the Remote Sensing Service of 
the xR4DRAMA platform (T2.3) which allows the request of satellite images and elevation data 
(DEMs). These data are combined and further processed to generate 3D mesh models of large 
areas.  

The deliverable starts with an introduction (Section 1) where the connection of the 3D 
reconstruction service with the xR4DRMA user and technical requirements is described. 
Section 2 provides a review of 3D reconstruction techniques. In Section 3 the basic steps of 
image-based 3D reconstruction are analyzed. Section 4 is dedicated in the description of the 
xR4DRAMA 3D reconstruction services. Examples of the services are also presented. General 
conclusions are drawn is Section 5.  

1.1  User & technical requirements 

An analysis regarding the user and technical requirements and their connection to the 3D 
reconstruction service is essential, since it plays a significant role for the definition of the data 
types needed, the functionalities of the service and the expected data quality. In this section 
we describe how multi-sourced 3D reconstruction of outdoors spaces, i.e. the generation of 
photorealistic 3D models from different data sources, with the use of drones and cameras in 
the field, or satellite data from relevant online repositories and services, is related to technical 
and user requirements for each PUC.  

The relevant user and technical requirements were defined in deliverable D5.2 and finalized 
in D6.2 (Table 1 and Table 2).  

Req-ID Name Description 

SYS-6 Immersive visual 
representation   

A functionality that visualizes the location and 
additional information to enhance situation 
awareness (e.g. VR, AR)  

SYS-7 Initial (Level 1) situation 
awareness for control 
room staff  

System can present available information in a spatial 
view (Initial scene view)  

• Immersive 

• Non-immersive 

• PoV 

• Bird's Eye  

Table 1: User requirements relevant to 3D reconstruction service 
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TR NO. Technical Requirements Related 
components 

User Requirements 

TR_SM_01 Creates a new job for 3d 
reconstruction 

Space modelling SYS-6 

TR_SM_02 Creates a simplification job. Space modelling SYS-6 

TR_SM_03 Execute the 3D reconstruction 
process 

Space modelling SYS-6 

TR_SM_04 Return the 3D model as an obj and 
texture maps 

Data storage SYS-6 

TR_SM_05 Consider the visual analytics 
semantic info in the 
reconstruction process 

Visual analysis SYS-6 

TR_SM_06 Fuse geographic data from the 
satellite data 

GIS/Geoserver SYS-6 

Table 2: Technical requirements for space modelling component 

 

In the following figure, the position of the 3D reconstruction service in the 3D models pipeline 
is showcased. This is a user triggered pipeline to generate 3D models from data captured by 
various cameras mounted on drones, as well as hand-held cameras. This helps in layering the 
status of the area of a project on top of the data captured from the online map sources. The 
pipeline includes the Space sensors to capture the location, which is then analysed, and 3D 
reconstruction is done. The data is finally saved in the platform’s data storage and can be 
displayed in the 3 major visualisation tools by the different users.    
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Figure 1: 3D model’s pipeline 

xR4DRAMA project envisions 2 pilot use cases, disaster management and media production 
planning.  

1.2  PUC1 - Disaster management 

The Disaster management use case is oriented to flood prevention and preparedness in 
Vicenza City (Italy), a highly populated and urbanized area, with extremely complex drainage 
and irrigation networks and important economic activities, ecological and cultural assets, 
characterized by high flood risk. The aim of the use case is to demonstrate the use of a VR 
environment and of extended reality to improve first responders’ management before and 
during a flood event. 

In a pre-emergency management phase, the xR4DRAMA platform will carry out an initial 
query on the expected flooding scenario in Vicenza. Detailed 3D models from drones 
visualized using multiple VR devices inside a single environment are expected to advance the 
situation awareness in the control room. In an emergency phase, the control room will be able 
to update its situation awareness context by verifying whether the real/current in situ 
conditions coincide with the forecast of the expected event. Additionally, a 3D representation 
allows the control room to have a realistic view of the place where the emergency is occurring 
(e.g. real flooding conditions, position of elements at risk) to plan the intervention. At the 
same time, it allows the first responders to be guided in the action in situ in safe conditions 
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following indications on the best path (to avoid dangerous areas) and identify important 
information about the intervention to be performed. 

Table 3 and Table 4 include the specific requirements of the space modelling module as they 
were identified in deliverables D6.1 and D6.2 respectively. 
 

Req Id Name Description Priority 1=highest 

3=lowest 

DM7 Drone 
analysis 

To analyse video and images from 
drone to update/enhance the VR 
scenarios 

1 

DM8 Satellite 
images 
analysis 

To analyse satellite images to 
update/enhance the VR scenarios 

1 

Table 3: Specific Disaster management requirements for space modelling component 

 

Info-ID Category Name Description Possible source 
of information 
or data 

Priority 
(1=high 
4=low) 

PUC1-
15 

Geography, 
Surroundings 

Land use 
change, past 
flood events’ 
extent 

Information 
derived by 
satellite images 
analysis 

LEVEL 1/2/3: 

Information 
from 
COPERNICUS 
satellites 

3 

Table 4: Information-related requirements for space modelling component (Disaster management) 

1.3  PUC2 - Media production planning 

The media production planning use case is oriented in exploiting tools to perform various 
simulations such as examining a chosen location, collaborate on a virtual representation of it 
and in general to supervize and manage the production process from a remote position. The 
space modelling module will enable the production management team in the control room to 
make creative decisions regarding camera angles and movements or whether they should 
utilize special equipment like cranes, lights, drones etc. Besides allowing all stakeholders to 
get a spatial sense for a candidate location, higher level of situation awareness (level 3) is 
expected to be achieved, where users will be able to "see" the visual effect of certain shots 
through the "camera's eye", to try out longer and complex camera movements and tracking 
shots, to interact with other team members within the virtual environment and to test 
different lighting concepts. 

Corfu was chosen as a location for the media production planning use case, since it is easily 
accessible for all consortium partners, weather conditions potentially allow for media 
production throughout the year and it is more straight-forward for the Athens-based 
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consortium partner up2metric to obtain UAV flight permissions and to organise the data 
collection, given the COVID-19 travel restrictions. 

Table 5 and Table 6 include the specific requirements of the space sensing module as they 
were identified in deliverables D6.1 and D6.2 respectively. 

 

Req Id  Name  Description  Priority 
(1=highest  

3=lowest)  

Comment  

MP4 Advanced (Level 
3) situation 
awareness 

The system provides 
(advanced) functionalities 
that further increase 
situation awareness and 
that can be utilized by 
control room staff at will 

 1 • Possibility to define 
camera positions 

• Possibility to 
simulate camera 
movements 

• Add simulations of 
time (daylight, 
night) or specific 
weather situations 

 
Relevant for UC_3 

Table 5: Specific Media production planning requirements for space modelling component 

 

Info-ID Category Name Description Possible source of 
information or data 

Priority 
(1=high 
4=low) 

PUC2-
11 

Facilities Props&Gear Possibility to put 
props/decoration/et
c. in the environment 

Import of existing 3D 
Models 

2 

Table 6: Information-related requirements for space modelling component (Media production 
planning) 
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2 REVIEW 

2.1  Introduction 

Photogrammetric, or image-based, three-dimensional (3D) reconstruction is an image 
processing technique that allows the generation of digital 3D models from a series of two-
dimensional images (Stentoumis, 2018; Rickard et al., 2020) (Figure 2). It is a mature but still 
active scientific topic in both photogrammetric and computer vision literature, where a series 
of articles propose good practices and innovative methods to improve efficiency, geometric 
accuracy, and visual quality, illustrating its popularity as well as its potential to produce high-
quality spatial data. The following literature review describes various SFM (Structure from 
Motion) and MVS (Multi-View Stereo) algorithms that can be used to accomplish each step of 
the 3D reconstruction pipeline. Additional factors, such as the vision setup, texture, and size 
of the observed object, are also considered part of the analysis (Ham et al., 2019).    

 

 

Figure 2: 3D reconstruction using Structure from Motion [Bianco et al., 2018] 

 

To capture reality in 3D, a set of overlapping images, typically taken with hand-held cameras 
or unmanned aerial vehicles (UAVs), is required (Figure 3). Following a Structure from Motion 
(SfM) pipeline, the camera parameters and a sparse point cloud of the depicted 3D space are 
determined. MVS (Multi-View Stereo) algorithms are subsequently applied to densify the 
sparse point cloud, which is then triangulated into a 3D digital model called a mesh. Lastly, the 
mesh is textured using the images. Concisely, a typical image-based 3D reconstruction pipeline 
includes the following steps:  

→ Feature detection  

→ Keypoints Matching   

→ Bundle Adjustment 

→ Multi-View Stereo Matching  

→ Model Fitting  

→ Texture Mapping  
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Figure 3: Schematic workflow of the SfM-MVS process resulting [Iglhaut et al., 2019] 

3D reconstruction of a scene or object provides information that is currently utilized by a 
variety of applications, including robot navigation (Ann et al., 2016), object tracking (Ma et al., 
2019), pavement distress analysis (Inzerillo et al., 2018), estimation of human poses in 3D 
(Tome et al., 2017) or estimation of food volumes (Dehais et al., 2017). 

In the past decade, Structure-from-Motion (SfM) combined with Unmanned Aerial Vehicles 
(UAV) footage has become increasingly popular among professionals and amateurs for 
capturing reality in 3D, due to the advancements in the field that make the whole process 
automatic and easy to apply for inexperienced users (James et al., 2019).  

It is imperative, however, to investigate the potential and limitations of SfM/UAV techniques 
under different practical application conditions, as well as current good practices and 
innovative solutions to the most common problems encountered.    

Obstructions or occluded areas can complicate the 3D reconstruction process (Stathopoulou 
et al., 2019). In addition, many tools adopt different terminology and offer to users the ability 
to interact with different parameters of the pipeline (Remondino et al., 2017). Consequently, 
new methods for improving SfM/UAV results are constantly being proposed at every stage of 
the typical SfM process. Among these are the use of learned descriptors (Jiang et al., 2021) in 
place of handcrafted ones or the adjustment of the image's environmental values (Moon et 
al., 2021). Moreover, new factors that affect the accuracy of 3D data in various applications 
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are constantly being analysed. Zeybek & Biçici (2021) evaluate two factors affecting the three-
dimensional model's accuracy. The first was the flight altitude of the UAV, and the second was 
the software used for the three-dimensional model reconstruction. According to Li et al. 
(2021), another factor is the actual terrain which especially in the case of vertical imagery, can 
reduce the mapping accuracy. However, this accuracy can be increased by a more significant 
overlap of the images or the use of oblique images. 

2.2  Existing 3D reconstruction tools 

Many commercial software solutions for image-based 3D reconstruction exist and are suitable 
for professional and engineering applications. Agisoft Metashape1, ContextCapture2, 
Pix4Dmapper3, Reality Capture4 are examples of such software suites. The 3D models 
generated using these software suites can vary depending on the 3D object (e.g., model 
quality or processing time). According to reviews found in the literature, Pix4DMapper, in 
terms of processing time, is faster than Agisoft Metashape (Zarnowski et al., 2015; 
Georgopoulos et al., 2016) and gives more accurate results (Georgopoulos et al., 2016; Burns 
& Delparte, 2017). Reality Capture, on the other hand, offers fully automatic processes and is 
widely adopted in the game development industry (Remondino et al., 2017; Gabara & Sawicki, 
2018; Luhmann et al., 2019; Kingsland, 2020). Becker et al. (2018) compare Agisoft 
Metashape, ContextCapture, and Pix4Dmapper in comparable 3D reconstruction scenarios 
and suggest that ContextCapture produces 3D models of higher quality at about the same 
time as Pix4Dmapper.  

In parallel to commercial solutions, there exist several open-source and freeware alternatives. 
3DF Zephyr Free5, COLMAP6, Meshroom7, OpenMVG8, Regard3D9, Visual SFM10 are among the 
most widely used. Meshroom is based on the AliceVision 3D computer vision framework 
(Griwodz et al., 2021) and offers a comprehensive photogrammetric workflow combined with 
an easy-to-use graphical interface. Thus, it can be considered in many situations a valid 
alternative to commercial software (Ðuric et al., 2021) requiring, however, longer processing 
times (Reljić et al., 2021). Meshroom has been used in numerous industries, including 
manufacturing, medicine (Collins et al., 2021), cultural heritage (e Sá et al., 2019), archaeology 
(Milàn et al., 2020; Lallensack et al., 2020), biology (Chowdhury et al., 2021), and surveillance 
(Wallner et al., 2021). As a general remark, open-source solutions often offer more 
parameterization and interchangeability between pipelines, allowing full control of the 
implemented functions. Moon et al. (2021) and Jiang et al. (2021) performed evaluations of 
different SfM software tools.   

 

1 https://www.agisoft.com/  
2 https://www.bentley.com/pl/products/brands/contextcapture  
3 https://www.pix4d.com/  
4 https://www.capturingreality.com/  
5 https://www.3dflow.net/  
6 https://demuc.de/colmap/  
7 https://alicevision.org/#meshroom  
8 https://github.com/openMVG/openMVG    
9 http://www.regard3d.org/  
10 http://ccwu.me/vsfm/index.html  

https://www.agisoft.com/
https://www.bentley.com/pl/products/brands/contextcapture
https://www.pix4d.com/
https://www.capturingreality.com/
https://www.3dflow.net/
https://demuc.de/colmap/
https://alicevision.org/#meshroom
https://github.com/openMVG/openMVG
http://www.regard3d.org/
http://ccwu.me/vsfm/index.html
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Besides commercial and open-source/freeware stand-alone software tools lately there exist 
web-based applications, where one can upload images and obtain 3D mesh models. A first 
web-based 3D reconstruction service has been developed by Vergauwen and van Gool (2006) 
to meet the needs of the cultural heritage field. The service involves a pipeline that begins 
with the user uploading images of the object or scene(s) he wishes to reconstruct. The 
automatic reconstruction process computes the depth maps for the images, as well as the 
camera calibration, using a server connected to a cluster of computers. Likewise, Tefera et al. 
(2018) present a web-based 3D imaging pipeline, 3Dnow, that can be used by uploading a set 
of images through a web interface. As well as producing sparse and dense point clouds, 3Dnow 
can also generate mesh models. Embedded visualization interfaces allow users to preview 
directly on the web browser or download 3D models in standard formats. 

2.3  Advances in Structure from Motion 

New SfM algorithms are being proposed that promise new possibilities and improved results. 
Incremental SfM is a widely used algorithm (Pollefeys et al., 2004; Snavely et al., 2006; Agarwal 
et al., 2011; Bianco et al., 2018). As a result, most photogrammetric software utilizes this 
algorithm. This algorithm finds the correspondences between images and performs an 
iterative, incremental reconstruction. Below is a description of the algorithms used in each 
step of this algorithm. 

SIFT (Lowe, 2004), SURF (Bay et al., 2008), ORB (Rublee et al., 2011), BRISK (Leutenegger et 
al., 2011), KAZE (Alcantarilla et al., 2012), AKAZE (Alcantarilla et al., 2013) are some of the 
most widely used algorithms for Feature Extraction. They are all invariant to changes in scale, 
rotation, and to a limited extent, affine deformations. Among these, SIFT and SURF are the 
most widely known; however, SURF offers a computationally less expensive alternative to SIFT 
(Tareen & Saleem, 2018). 

The Feature Matching step can be performed using a variety of methods. When comparing 
two feature points, the distance of their descriptors is the simplest way to determine whether 
they are similar. The Hamming distance is measured for binary descriptors (such as ORB and 
BRISK), whereas the Euclidean distance is measured for gradient-based descriptors (such as 
SIFT, SURF, etc.). This method is known as Brute-Force Matcher. Despite its simplicity, its 
major drawback is that it compares every feature point of one image with every feature point 
of the other. A similar but faster method is FLANN (Fast Library for Approximate Nearest 
Neighbors) (Muja & Lowe, 2009). As an alternative to comparing a feature point with all 
feature points of the other image, the comparison is made only with the approximate nearest 
neighbors in the high-dimensional space. Cascade hashing (Cheng et al., 2014) is another 
method used. For each feature of an image, the Cascade Hashing algorithm consists of three 
steps. First, a coarse search is conducted using the LSH method, known as hashing looking in 
the first step. In this step, buckets described by binary code are created using the LSH method, 
and the tables of buckets are generated. Each table contains one bucket containing the 
searched feature point. The Hamming distances are calculated in the second step after 
remapping the buckets containing the feature point into the higher dimensional Hamming 
space. As a final step, the two buckets with the shortest Hamming distance are selected, and 
the Brute-Force search is applied to the feature points of these buckets. 
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The following algorithms allow the geometric verification of the correspondences of the 
previous algorithms. As the verification is geometric, the choice of algorithm depends on the 
process of capturing the images. Specifically, if the object photographed is planar, the images 
are related through homography. The homography matrix has eight degrees of freedom, and 
each point has two equations, so four points suffice to solve the matrix (Hartley & Zisserman, 
2004). The epipolar geometry and epipolar constraint, whereby a point in one image 
corresponds to a line in the other image, are exploited when the object is not planar. Whether 
the intrinsic parameters of a camera are known or unknown, this constraint can be described 
by the essential matrix E or the fundamental matrix F. In terms of the essential matrix, five 
degrees of freedom represent the camera's extrinsic parameters. In order to solve this 
problem, at least five correspondences are required, which is accomplished through the 5-
point algorithm (Nister, 2004; Stewénius et al., 2006). Alternatively, the fundamental matrix 
has seven degrees of freedom, including intrinsic and extrinsic parameters. Therefore, a 7-
point or normalized 8-point algorithm with a linear solution can be applied to the solution of 
this problem (Hartley & Zisserman, 2004). 

Concisely, the previous algorithms involved finding the relative orientation of two images and 
generating 3D points from their correspondences. Then, all images that have a sufficient 
number of correspondences with the 3D points of these two images are selected. Each new 
image added in each iteration has six degrees of freedom corresponding to its pose. Based on 
the solution of the Perspective-n-Point problem, these data can be obtained. The solution to 
this problem requires at least three correspondences with known 3D points. It is a P3P method 
(Xiao-Shan Gao et al., 2003) that provides four geometrically feasible solutions to the problem 
when the minimum correspondences are used. The RANSAC algorithm is typically used to 
identify a unique solution. Besides P3P, P4P (Bujnak et al., 2008) and P5P (Kukelova et al., 
2013) are other related methods. There is also an EPnP (Lepetit et al., 2008) method that 
requires at least four correspondences in order to solve the problem. In this case, the n points 
are expressed as a weighted sum of four virtual control points. The final camera pose is solved 
using the control points as unknowns. Additionally, DLS (Direct Least Squares) (Hesch & 
Roumeliotis, 2011) calculates all PnP problem solutions as the minima of a nonlinear least-
squares cost function. In the previous methods, the cameras were assumed to be calibrated. 
In addition to estimating extrinsic parameters, DLT (Direct Linear Transform) (Hartley & 
Zisserman, 2004) also attempts to estimate intrinsic parameters. This method requires at least 
six correspondences.  

Through the application of the prior algorithms, a sparse point cloud can be made denser 
through triangulation in which new points are found that appear in at least two images. As a 
result, the corresponding 3D points can be calculated by knowing the camera poses and the 
correspondences between the images. These points can be determined using two-view or 
multiple-view geometry (N-view). According to its name, the Mid-point method determines 
the midpoint between two back-projected rays by finding the shortest line between them. 
Another option is to calculate a 3D coordinate using the DLT method, which solves an 
unknown matrix using the SVD method. 

Optimizing both the parameters of the camera poses and the points in the resulting sparse 
point cloud is necessary to eliminate any possible inaccuracies in the previous process. In the 
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last step, Bundle Adjustment is performed using the Levenberg-Marquardt algorithm, which 
performs optimization based on nonlinear least squares. Two widely known algorithms for 
solving the nonlinear least squares problem are Multicore Bundle Adjustment (Wu et al., 
2011) and Ceres Solver (Agarwal & Mierle, 2012). 

As part of the previous steps (algorithms) of geometric verification and the solution to the PnP 
problem, possible outliers must be removed. RANSAC algorithms (Fischler & Bolles, 1981) or 
variants are (Chum et al., 2003; Chum & Matas, 2005; Raguram et al., 2008; Moisan et al., 
2012; Fragoso et al., 2013) used for this purpose. In brief, the RANSAC (RANdom Sampling 
Consensus) algorithm calculates the parameters of a mathematical-geometric model based 
on random combinations of minimum data points. After that, it uses a threshold to separate 
inliers and outliers. Generally, the solution (calculated values of parameters) chosen is the one 
with the most inliers (the most consistent solution). 

Apart from the incremental SfM algorithm, other algorithms have been proposed. In recent 
years, interest has shifted to the global SfM algorithm (Cui & Tan, 2015; Zhu et al., 2018; Barath 
et al., 2021) because of its higher computational efficiency and reconstruction accuracy. 
Instead of registering each image one at a time, as in incremental SfM, global SfM resolves all 
camera poses simultaneously (Zhu et al., 2018). 

In order to use the global SfM algorithm effectively, rotational and mainly translational 
averaging are challenging tasks, as is its sensitivity to noisy data (Cui & Tan, 2015). New ideas 
are constantly being proposed to overcome these challenges. Cui et al. (2016) proposes a 
robust two-step translation averaging strategy. According to Martinec & Pajdla (2007), the 
rotation averaging problem can be viewed as a linear system, and rotation parameterizations 
can be relaxed. The Lie-algebra representation of Govindu (2004) is used to achieve better 
results by combining a robust L1 optimization (Chatterjee & Govindu, 2013). Cui & Tan (2015) 
constructed a sparse depth image for each camera to overcome both challenges. 

A hybrid algorithm of global and incremental SfM was proposed and implemented by Zhu et 
al. (2017), combining and integrating both methods' advantages and providing highly accurate 
results. Furthermore, other hybrid formulations have also been presented (Bhowmick et al., 
2015; Sweeney et al., 2016). On the other hand, Chen et al. (2017) presented a tree-structured 
SfM algorithm, which is more efficient and robust to noise than the traditional SfM algorithm. 
Furthermore, it was recently proposed by Li et al. (2022) to eliminate the background of the 
target object, thereby reducing its impact on the target object. Additionally, it overcomes the 
weakness of conventional SfM algorithms when no background feature points are present. 

In recent years, deep learning algorithms and active learning algorithms have dominated the 
field of computer vision. Therefore, it is proposed to use machine learning or deep learning 
technology to solve the important problem of reconstructing a 3D object. Deep neural 
networks are often used to reconstruct 3D shapes from a single image (or several images) 
using their ability to reconstruct 3D shapes. Based on machine learning, Zhu & Zhou (2022) 
propose a method for virtual-real fusion 3D reconstruction technology with application to 
various fields, such as medicine, artificial intelligence, and education. A technique of active 
learning has also been suggested in the literature. For instance, Kowdle et al. (2011) used an 
energy minimization framework for piecewise planar reconstruction but provided support for 
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uncertain regions through simple user interaction. Data-driven active touch is another 
interesting problem investigated (Smith et al., 2021). 

2.4  3D reconstruction and xR technologies 

During the past few years, there has been significant progress in the reconstruction of 3D 
scenes and the exploration of such data in VR/AR environments, with applications in many 
fields such as cultural heritage (Bruno et al., 2010), education and surgical simulation (Roh et 
al., 2021), medical training (Hsieh & Lee, 2018), content creation (Bhattacharjee & Chaudhuri, 
2020), virtual fitting (Rhee & Lee, 2021), and hospitality & tourism (Nayyar et al., 2018). 
Furthermore, solutions to difficult 3D reconstruction problems are presented, particularly 
when VR/AR technology is considered. For example, 3D reconstruction of indoor 
environments (Navarro et al., 2017, Manni et al., 2021) or 3D reconstruction of the human 
body from egocentric viewpoints (Grover et al., 2021).  

Producing reliable xR products requires a custom workflow and a lot of effort in terms of time 
and professionals involved to guarantee this fidelity (Ferdani et al., 2020). Thus, new 
workflows are constantly proposed to properly model a 3D reconstructed scene (Spallone et 
al., 2021). Rahaman and Champion (2019) describe a complete workflow from image capture 
to visualization of the model in VR/AR. Navarro et al., 2017, El Saer (2020a), El Saer (2020b), 
and Kalisperakis et al. (2022) present methodologies for accurate image-based 3D 
reconstruction of outdoor spaces for the needs of immersive VR applications.  
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3 MAIN STEPS OF 3D RECONSTRUCTION 

This chapter describes the photogrammetric pipeline to obtain photorealistic 3D mesh models 
from sets of overlapping images that has been adopted for the image-based 3D reconstruction 
service of xR4DRAMA platform. As mentioned before, Structure from Motion refers to the 
first part of the workflow that provides the camera parameters (external and even internal 
orientation) and a sparse point cloud. This sparse cloud is then densified via so-called dense 
image matching algorithms such as MVS, thereby creating a dense point cloud (Iglhaut et al., 
2019).   

Feature Extraction 

Finding the orientations of the images (exterior and interior) depends on tie points. Therefore, 
there must be a considerable number of reliable points. As a result, the first step is to extract 
(automatically) keypoints, i.e., those that can be identified from image to image with certainty. 
In addition to being distinct, such points should also be invariant to scale variations, rotations, 
perspective distortions, and illumination distortions (illumination). Consequently, keypoints in 
the images may be edges or corners, which are detectable in areas with high contrast or a 
color change. An effective and well-known algorithm for detecting feature points is SIFT 
(Scale-Invariant Feature Transform).   

This algorithm not only finds some feature points in the images but also creates a unique 
description for each point, allowing for a comparison of these descriptions to be used for 
effective matching. Consequently, SIFT aims to extract discrete features invariant to changes 
in scale and rotation, as well as reliable for matching between images despite possible 
distortions in radiometry and perspective. Following is a brief description of the algorithm's 
steps:   

→ Scale-space extrema detection  

→ Keypoint localization  

→ Orientation assignment  

→ Keypoint descriptor  

Initially, the algorithm searches for features in image pyramids (scale-space) for each image. 
In this way, the points are invariant to changes in scale. At first, internal copies of the image 
are created and divided into levels. The number of levels depends on the image's size. Each 
level's images are half the size of the earlier levels. In parallel, the Gaussian smoothing filter is 
applied gradually (with increasing standard deviations) within each level. As a result, the Gauss 
pyramid is obtained. Next, the differences between the images of each level (current and next) 
are calculated in twos to calculate the DoG (Difference of Gaussian) pyramid. Thus, each point 
is compared to eight neighbors within its level, nine neighbors above it, and nine neighbors 
below it (26 in total) (Figure 4). Keypoints are points (pixels) that are maximum, or minimum 
compared to their neighbors. Since the previous step produced lots of keypoints, the next step 
is to determine the exact location of the extrema using the Taylor series expansion of scale 
space. Similarly, points in low contrast areas (threshold) or along edges (angularity criterion) 
should be rejected. 
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Figure 4: Detected Keypoints as Extremes of DoG [Lowe, 2004] 

Next, the scale-invariant keypoints need to be assigned an orientation to become rotation-
invariant. This is done by creating an orientation histogram with 36 bins (from 0° to 360°), in 
which the amount added is proportional to the magnitude of the gradient at that point. The 
orientation of keypoints is determined by the highest peak of the histogram (which must 
exceed a threshold). When other peaks exceed 80% of the histogram's maximum, more than 
one keypoint is created with the exact location and scale but with different orientations. 

 

 

Figure 5: Keypoint descriptor [Lowe, 2004] 

Then, its descriptor is created to make the feature point invariant to radiometric distortions 
such as illumination or changes in angle of view due to rotation between images. To generate 
the descriptor around each keypoint, a 16𝑥16 window is created at the scale at which the 
keypoint was found, and then from this window, a histogram of 4𝑥4 size sub-blocks in 8 bin 
orientation is created (Figure 5). This makes the descriptor vector consist of 4𝑥4𝑥8 = 128 
elements for each feature point. Finally, the keypoint descriptor is normalized to unit length 
to ensure the illumination independence. Then, the values are clipped to the chosen threshold 
and the resulting vector is again renormalized to unit length. 

Keypoints Matching 

It is then necessary to determine which images depict the same parts of the object or, in other 
words, which images overlap. The process should be automated without human intervention. 
The previous process generated keypoints and their descriptors for each image. By using the 
descriptors, keypoints can be compared between images. Hence, the assumption can be made 
that an image with a significant number of feature points that resemble (after comparison) 
those of another image sees a common part of that object (Bianco et al., 2018).    
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Although the keypoints are invariant, the above procedure may result in some incorrect 
matches. This is mainly due to the fact that this procedure ignores the most critical factor, 
which is the geometric consistency of these correspondences. In particular, if a minimum 
number of these correspondences are selected to describe the geometric relationships 
between the images, this should also apply to all other correspondences. Whether the object 
or scene photographed is planar (homography) or non-planar (epipolar geometry), the 
method used to describe the geometric relationship of the images will differ. It also varies 
depending on whether intrinsic camera parameters are known (essential matrix E) or not 
(fundamental matrix F) if it is not planar.   

These methods are usually used in combination with robust estimation techniques such as 
RANSAC (RANdom SAmple Consensus) or its faster variations (e.g., PROSAC, ARRSAC, EVSAC, 
or LMed) to remove as many outliers as possible. 

Structure from Motion 

Finding the position of the cameras usually starts from a pair of images with the largest 
number of matches. This process of initialization is known as incremental reconstruction. First, 
the position of the two images is initialized, and their tie points form the first set of points of 
the sparse point cloud. Then, a new image is added each time, and accordingly, an additional 
set of tie points is repeatedly added to the sparse cloud, as described below.    

In order to add the new tie points to the existing cloud, it is necessary to find the camera's 
pose (position and rotation) according to a world model. The existing 3D reconstruction points 
represent the common keypoints of the initial images in 3D. Therefore, the newly added image 
will share keypoints with one or both images. Through this correspondence, which is no longer 
only two-dimensional but also three-dimensional, the camera pose of the newly added image 
can be calculated. Location (X, Y, Z) and rotation (pitch, yaw, and roll) are each camera's six 
degrees of freedom. To calculate these parameters, the Perspective-n-Point problem must be 
solved. Several algorithms are proposed for this purpose. Moreover, RANSAC (or its variants) 
is used to remove outliers in order to ensure that the camera pose estimation is robust.     

To add the points of a new recorded image, they must be visible in at least one of the already 
recorded images whose positions have been estimated. In addition, these points must be 
located at the intersection of the epipolar lines above the epipolar plane, considering the 
epipolar geometry and epipolar constraint. However, due to the reprojection error caused by 
possible inaccuracies of the previous steps, the point will likely not be at the intersection of 
the lines. Several algorithms consider this inaccuracy in this case, including sampling-based, 
linear (DLT), 2-view, midpoint, or N-view algorithms.     

The Bundle Adjustment phase, performed for every image added to the reconstruction, 
attempts to minimize the accumulation of errors mentioned above and produce the best 
values for the 3D reconstructed points and camera calibration parameters. The algorithm used 
for BA is Levenberg-Marquardt, and the implementations that can be used are Ceres Solver, 
Multicore BA, or SBA. 

Multi-View Stereo Matching 

Bundle Adjustment produces extrinsic (and intrinsic) parameters of all cameras and a sparse 
cloud of 3D points. There are some points shown in the images that cannot be considered 
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feature points, which explains the sparseness of the cloud. Nevertheless, to reconstruct the 
scene accurately, a dense cloud is necessary. Using Multi-View Stereo (MVS) algorithms, 
points missed in the previous process are detected. According to the classification given by 
Seitz et al. (2006), there are four categories of MVS algorithms: 

• Voxel-based methods (Furukawa & Ponce, 2006; Seitz & Dyer, 1999; Sinha & 

Pollefeys, 2005; Treuille et al., 2004; Vogiatzis et al., 2005). 

• Surface-evolution-based methods (Bhotika et al., 2002; Kutulakos, 2000; Kutulakos & 

Seitz et al., 2000; Yang et al., 2003; Zeng et al., 2005). 

• Feature-point-growing-based methods (Faugeras et al., 1990; Manessis et al., 2000; 

Taylor, 2003). 

• Depth-map-merging-based methods (Gargallo & Sturm, 2005; Narayanan et al., 1998; 

Szeliski, 1999).   

As a result, voxel-based methods calculate a cost function and create a surface using a 3D 
volume within a bounding box. A cost function that yields a value below a threshold indicates 
that the given voxel is part of the object's surface. Likewise, the second category begins with 
a three-dimensional volume and continuously adds or subtracts voxels to minimize a cost 
function. Feature points are used in the third category, which combines them according to 
their visibility to form patches. As a result of the patches, the final surface is formed. Finally, 
the fourth category combines depth maps from multiple viewpoints into a point cloud. 

Model Fitting 

After the SfM-MVS workflow is complete, the triangulation of the model can begin. Firstly, the 
planar subdivision of the set of points (dense cloud) into triangles is done. Next, points are 
projected in a horizontal plane, and triangles are formed. Then these 2D triangles are mapped 
into 3D triangles. The points from which the triangles are created are not random but rather 
so that elongated triangles (small angles) are avoided, as they can interfere with distant 
points. This type of triangulation is known as Delaunay triangulation, aiming to maximize the 
triangle's smallest angle. According to Delaunay triangulation, the circle circumscribed by the 
triangle's points must not have any other points. This is because a line segment has an infinite 
number of circumscribed circles in the plane, but a triangle only has one. As a result, all points 
are connected to the two closest ones. At the same time, this criterion ensures that the 
creation of the triangular network is univocal.  

In principle, a Delaunay triangle is one that is contained within a dense point cloud and a 
whose circumscribed circle is empty, i.e., it does not enclose another point within the cloud. 
Several methods of Delaunay triangulation exist, such as divide-and-conquer algorithms 
(Cignoni et al., 1998), randomized incremental algorithms (Devillers, 1998), or indirect 
methods based on Voronoi diagrams (Lee & Schachter, 1980). Also, constraints can be used 
for Delaunay triangulation. As in this case, breaklines are used as sides of Delaunay triangles. 
Using breaklines (discontinuity lines) is common in steep slope areas, such as roads, buildings, 
streams, etc. Additionally, an interpolated color can be added after triangulation by blending 
the colors of the three points. 
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Texture Mapping 

 

Figure 6: Principle of texture mapping [Li et al., 2010] 

It is the last step of the 3D reconstruction that achieves the desired realism of the final model. 
Because the triangle's color is the result of blending the colors of the points that define it, it 
cannot accurately reflect its texture. This type of detail has the disadvantage of requiring a 
vast number of triangles. However, it is possible to reproduce an object's realistic texture 
directly from its images. It is important not to choose images that are radiometrically different 
from the others (e.g., due to different lighting) to maintain the color continuity of the model 
texture. 

Creating realistic photorealistic 3D models relies heavily on texture maps. In a few words, each 
triangle is projected onto the image (Figure 6). In order to create the texture map, the pixels 
corresponding to that triangle are snapped off and placed in a new image. In other words, a 
texture map is a collection of smaller images (triangles or faces), usually packed together to 
reduce texture size. 
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4 XR4DRAMA 3D SERVICES 

4.1  3D-Reconstruction Service 

The 3D Reconstruction Service of xR4DRAMA platform is a web application that produces 
photorealistic 3D models from images and/or videos, completely automatically. In the current 
development cycle of the service, the primary purpose is to create 3D models to enhance 
actors' situation awareness on the ground and to facilitate the two use cases of the 
xR4DRAMA platform.  

4.1.1   Implementation of 3D-Reconstruction Service 

In this section, the xR4Drama image-based 3D-Reconstruction Service is described in detail, 
including how 3D models can be generated based on images and videos submitted by the user. 
For the algorithmic implementation, as described in Section 3 of this deliverable, AliceVision 
(Jancosek and Pajdla 2011) & Meshroom (Moulon et al., 2012) software libraries were used. 
The default pipeline consists of two main stages, SfM and MVS, each consisting of several 
nodes (Figure 7), including camera initialization, feature extraction, image matching, feature 
matching, SfM, depth mapping (including the steps of preparation, mapping, and filtering), 
meshing, and mesh filtering. A mesh decimation step was also added, following the mesh 
filtering step, during which the resulting model is simplified by 70% (default value).  

 

Figure 7: Basic 3D Reconstruction steps  
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Swagger is a framework that allows the visualization and use of API applications. In practice, 
Swagger displays interactive REST API documentation. All available nodes are described in 
detail, along with the information the API receives and returns. At the same time, it takes into 
account the available roles. For example, an administrator can see more types of queries than 
simple users. 

Figure 8 shows the Swagger of the 3D-Reconstruction Service (https://baremetal.up2metric.com/ 

swagger/). The clients (users) can create a 3D model by posting images and/or videos in ZIP 
archive format. The service can also download the client's images embedded in a JSON file 
containing their links. Furthermore, the service supplies the ability to download the model 
(ZIP file, which contains OBJ file, MTL file, and textures in JPG format) if its creation is 
complete. In order to use 3D Reconstruction Service, clients must be registered in the system, 
meaning they must get an API key for authentication and authorization. 

 

Figure 8: xR4DRAMA 3D-Reconstruction Service Swagger 

The overview of the 3D reconstruction service is shown in Figure 9. 

 

Figure 9: An overview of the components and the data flow in the 3D reconstruction service. 

https://baremetal.up2metric.com/%20swagger/
https://baremetal.up2metric.com/%20swagger/
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Briefly describing the above diagram, the incoming requests are authenticated by the API key, 
and the requested jobs are registered in the database as pending jobs. As a response, the 
Service API returns a job ID. This ID can be used to get the 3D model when the job is completed. 
The service is looking in the database for pending jobs using a Job Manager (Figure 9). The 
jobs that were created earlier have higher priority, so the oldest pending job in the database 
is picked and executed first. In general, the job’s status can be described as:   

▪ pending: the job waits to be executed 

▪ in-progress: the job is currently in progress 

▪ completed: the job is completed which means that the results can be downloaded by 

the user 

▪ failed: the job failed for some reason 

 

GET - https://baremetal.up2metric.com/jobs  Read jobs 

POST - https://baremetal.up2metric.com/jobs  Create job via images/video 

POST - https://baremetal.up2metric.com/jobs/json  Create job via JSON 

GET - https://baremetal.up2metric.com/jobs/<job_id> Read job 

DELETE - https://baremetal.up2metric.com/jobs/<job_id> Delete job 

POST - https://baremetal.up2metric.com/jobs/<job_id>/rerun  Rerun job 

POST - https://baremetal.up2metric.com/jobs/<job_id>/simplify  Simplify job 

GET - https://baremetal.up2metric.com/jobs/<job_id>/download  Download job 

POST - https://baremetal.up2metric.com/jobs/<job_id>/assetBundle  Post assetBundle file 

PATCH - 
https://baremetal.up2metric.com/jobs/<job_id>/assetBundle 

Post assetBundle JSON file 

Table 7: REST routes in API 

In addition, the user can simplify the model by a certain percentage after the basic 3D 
reconstruction process (Figure 10). 

 

https://baremetal.up2metric.com/jobs
https://baremetal.up2metric.com/jobs
https://baremetal.up2metric.com/jobs/json
https://baremetal.up2metric.com/jobs/%3cjob_id
https://baremetal.up2metric.com/jobs/%3cjob_id%3e/rerun
https://baremetal.up2metric.com/jobs/%3cjob_id
https://baremetal.up2metric.com/jobs/%3cjob_id%3e/rerun
https://baremetal.up2metric.com/jobs/%3cjob_id%3e/simplify
https://baremetal.up2metric.com/jobs/%3cjob_id%3e/download
https://baremetal.up2metric.com/jobs/%3cjob_id%3e/assetBundler
https://baremetal.up2metric.com/jobs/%3cjob_id%3e/assetBundle


D4.2 – V1.0  

 

 

Page 29 

 

Figure 10: Simplify model  

The model resulting from a typical Structure from Motion pipeline is positioned in an arbitrary 
system at an arbitrary scale. To georeference the resulting 3D model, i.e. to determine the 
scale, 3D rotation, and 3D position that it has in the real world, a 3D similarity transformation 
is estimated and applied to the final 3D mesh model. This is possible if the metadata of the 
images contains GPS data (latitude, longitude, and altitude). In particular, the seven 
parameters of this transformation are estimated which describe the transformation between 
the camera poses from the GPS data and the camera poses calculated by SfM. Thus, the ZIP 
file containing the final textured model in the case where the model is georeferenced also 
contains a text file with the origin in the EPSG:3395 system (Figure 11, Figure 12). 

 

Figure 11: Arbitrary Coordinates System vs World Coordinates System 
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Figure 12: Comparison of the scale of the model before and after georeferencing 

Figure 13 shows the position of a point in a 3D model and the corresponding position of the 
point in Google Maps. 

 

Figure 13: Position in Google Earth and in Meshlab 

 

4.1.2   3D reconstruction examples 

The 3D reconstruction service was tested in multiple occasions by the users of xR4DRAMA 
platform and it was employed to obtain photorealistic 3D mesh models in order to support 
the two pilot use cases of xR4DRAMA research project.  

For the disaster management use case two areas were selected in the city of Vicenza. The first 
one covers a substantial part of the city centre and the second a suburban neighbourhood. 
Drone missions were scheduled and performed by xr4DRAMA’s partner up2metric between 
20 and 22 April 2022 (Figure 14). The drone campaigns were also assisted by members of 
AAWA and by Luca Fabris from the Civil Protection of Vicenza municipality. The drone imagery 
was fed in the 3D reconstruction service and 3D models were generated. Examples are 
showcased in Figure 15 and Figure 16. 
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Figure 14: Instances of the drone survey missions. 

 

Figure 15: Vicenza city center in Italy. Sample vertical images of city center area captured by UAV 
(left and middle). Resulting 3D mesh model (right) 
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Figure 16: Resulting 3D mesh model of Vicenza city center in Italy 

For the needs of PUC2 five sites in the island of Corfu were selected as possible locations for 
the media production. The data collection campaign was performed in Corfu by xR4DRAMA’s 



D4.2 – V1.0  

 

 

Page 33 

 

partner up2metric between 11 and 13 July 2021. The acquired data included vertical and 
oblique drone images, drone videos, images with a handheld camera, 360 panoramic images 
and GPS measurements to evaluate the geolocalization of the final 3D models. The images 
below display the results of the automatic reconstruction process for the Spianada area 
(Figure 17, Figure 18) and the Venetian fortress in the city of Corfu (Figure 19). 

   

   

   

Figure 17: Sample vertical images of Spianada area.  

 

Figure 18: 3D mesh model of the Spianada area 
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Figure 19: Venetian fortress in the city of Corfu 

Another set of images, captured by a mobile phone camera and the generated 3D mesh model 
are also presented below (Figure 20). 

 

Figure 20: War memorial Stralau in Berlin-Friedrichshain. Sample images (left and middle). 
Resulting 3D mesh model (right) 
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4.2  Satellite Service 

Besides image-based 3D reconstruction, the space modelling component of the xR4DRAMA 
platform provides the possibility to generate 3D photorealistic mesh models of large areas 
from Satellite data. This functionality is implemented as a module of the Remote Sensing 
service.     

Figure 21 shows the position of the 3D reconstruction service from Satellite data inside the 
GeoService architecture which also includes the GIS Service and the Satellite Service. The 
Satellite Service is a standalone application that downloads and provides satellite data 
(satellite images and digital elevation models - DEMs) from the Sentinel Hub.   

 

 

Figure 21: xR4Drama Services 

 

It is documented in the following Swagger link (Figure 22): 
https://geoservice.xr4drama.up2metric.com:8002/swagger#/. 

https://geoservice.xr4drama.up2metric.com:8002/
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Figure 22: xR4DRAMA Satellite Service Swagger 

The Satellite service provides data that can be valuable in disaster management scenarios. The 
authoring tool provides the ability to visualize these data. Specifically, when a user wishes to 
view a satellite image, the authoring tool communicates with the backend API, which obtains 
the data from the satellite service (Figure 23). 

 

 Figure 23: Satellite True-Color and Multispectral images 

4.2.1   Implementation of Satellite Service 

The xR4DRAMA Satellite service is implemented as an API. It provides Earth Observation 
imagery and 3D information data via the Sentinel Hub web service. The data supported by the 
current implementation are (Figure 24): 
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→ Multispectral or true-color (visible spectral zone) satellite images (10m resolution) 

→ Digital Elevation Model (15m resolution) 

 

Figure 24: DEM & true-color image (Corfu) 

Satellite data is organized into datasets called scan requests. This dataset can contain multiple 
rasters for different time reversals containing the same regions. Grouping the data into data 
sets makes their search faster and greatly facilitates the selection of the image and the 
corresponding DEM during the 3D reconstruction. The user of the Satellite service can send a 
scan request using an HTTP POST request. A request consists of the bounding box for the area 
of interest, the type of data (DEM, True-Color, or Multispectral), the satellite type (e.g., 
Sentinel), the time interval for the search, and timestamps (optional). The service works 
asynchronously to download the data in response to a scan request. Therefore, the client 
should check periodically to see if the job status has been completed. The following are the 
essential functions that a client of the service can perform: 

→ Download satellite data 

→ Search for existing satellite data 

→ Create a 3D model 

The Satellite service is responsible for downloading information satellite data within the 
project's boundaries. The information acquisition process aims to facilitate civil protection in 
hazardous weather conditions (Disaster Management use case of AAWA, PUC1) of the 
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xR4DRAMA platform. Specifically, the user can download satellite data by specifying a 
bounding box for the area of interest, a time interval (start and end), and a list of raster types 
(True-Color or/and Multispectral image and Digital Elevation Model). Moreover, satellite data 
can be downloaded for multiple timestamps by defining the parameter. Essentially, satellite 
data are collected by defining the following parameters: 

→ Bounding box 

→ Timestamp 

→ Time interval (start and end) 

→ Raster types 

By defining the following parameters, the user can search for available data: 

→ The bounding box of the area of interest 

→ Raster type (optional) 

→ Time interval (optional) 

After filtering all available satellite data, the satellite service will then return a list of results 
satisfying each request's requirements. Lastly, the satellite data is returned as a public link, 
which links to the storage files with an expiration date (Figure 25). 

 

Figure 25: Searching for available satellite data 

 

The Satellite service also offers the possibility of automatically reconstructing a 3D model 
based on satellite data. To generate their 3D model, users can select a satellite image (True-
Color or Multispectral) and DEM from available datasets. Following is a brief explanation of 
how the 3D model is created. 

Multispectral to RGB image conversion 

In the first instance, the image is converted to RGB (e.g., True-Color) if it is Multispectral 
(Figure 26). After that, to improve the image's contrast, each band is equalized using the 
histogram equalization technique. 
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Figure 26: Satellite Multispectral and True-Color images  

DEM resizing 

The next step is to reduce the resolution of the DEM, which will result in fewer vertices and, 
thus, fewer faces (Figure 27). Alternatively, the RGB image resolution may remain unchanged, 
giving the model a realistic appearance. 

  

Figure 27: DEM resizing 
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Altitude correction 

There is a possibility that the DEM contains outliers, i.e., values that are negative, or 
erroneously differ significantly from their neighboring values. In this case, the altitude value is 
replaced with the average of the neighboring altitudes. 

Coordinate preparation 

It is necessary to use a 3D cartesian coordinate system to display the generated model in any 
3D model editing software. Therefore, grid coordinates are converted from WGS'84 or EPSG: 
4326 (latitude, longitude, altitude) to WGS'84/World Mercator or EPSG: 3395 (easting, 
northing, altitude). 

3D Model Creation 

Delaunay triangulation is performed in the following steps, and the triangulated model is then 
textured using the RGB image. Lastly, the model is simplified to reduce the large number of 
redundant faces (Figure 28). 

 

Figure 28: Satellite True-Color and Multispectral images 
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4.3  Internal components  

The 3D-Reconstruction and the Satellite service contains the following internal components: 

• The 3D-Reconstruction Service API, which was created by Flask and handles the 3D 
models created from the inputs provided by the user. 

o Flask “is a widely used micro web framework for creating APIs in Python. It is a 
simple yet powerful web framework which is designed to get started quick and 
easy, with the ability to scale up to complex applications”11.  

o SQLite “is a C-language library that implements a small, fast, self-contained, 
high-reliability, full-featured, SQL database engine. SQLite is the most used 
database engine in the world. SQLite is built into all mobile phones and most 
computers and comes bundled inside countless other applications that people 
use every day”12. 

• The Satellite Service API, which is a FastAPI application that handles the scan requests 
and is wrapped by a uvicorn webserver in order to enable SSL. 

o FastAPI “is a modern, fast (high-performance), web framework for building APIs 
with Python 3.6+ based on standard Python type hints”13. 

o Uvicorn “is a lightning-fast ASGI server implementation, using uvloop and 
httptools” 14. 

o PostGIS database for storing the stateful scan requests and the created data. 
PostGIS15 is a spatial database extender for PostgreSQL object-relational 
database to perform CRUD (create, read, update, and delete) operations on GIS 
data. It adds support for geographic objects storing them as vectors, e.g., for 
geometry information, and as raster, and allowing location queries (spatial 
functions) to be run in SQL8. The spatial data types are points, lines (2 points), 
multi-lines (more than 2 points), and polygons (where the start and the end 
points are the same). 

• NGINX “is open-source software for web serving, reverse proxying, caching, load 

balancing, media streaming, and more”16. 

• Redis as a message broker and for queuing. 
o Redis “is an open source (BSD licensed), in-memory data structure store, used 

as a database, cache, and message broker”17. 

All those components are “dockerised” and the structure of the service can be easily deployed 
using a docker-compose file. 

 

 

 

11 https://flask.palletsprojects.com/  
12 https://www.sqlite.org/  
13 https://fastapi.tiangolo.com/ 
14 https://www.uvicorn.org/ 
15 https://postgis.net/  
16 https://www.nginx.com/  
17 https://redis.io/ 

https://flask.palletsprojects.com/
https://www.sqlite.org/
https://www.uvicorn.org/
https://postgis.net/
https://www.nginx.com/
https://redis.io/
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5 CONCLUSION 

In this document the space modelling service for outdoors environments of the xR4DRAMA 
for public spaces was presented which includes the work performed in task T4.4. (3D 
reconstruction of the area). The relations with user requirements were also presented and 
were considered for the definition of the appropriate methodologies, and techniques for 
generating 3D models that will serve the foreseen objectives.  

Details were given regarding the implementation and the use of the two main components. 
The first was about the development of an online 3D reconstruction service from drone 
images or images suitably taken by a handheld camera, or even videos, based on state-of-the-
art 3D vision and photogrammetric techniques.  This service can be used by any user who has 
an API key. If the metadata of images contains GPS data, the final model has the scale, 
rotation, and position it has in the real world. The second was about the development of the 
remote sensing 3D reconstruction service and in particular of the satellite 3D component, 
which provides 3D models of large areas, from available satellite images and DEMs within the 
project's boundaries. Again, these actions require an API key. 

Feedback from the exploitation of the developed services from the relevant tasks of the 
xR4DRAMA project will be taken into account and necessary corrections and updates are 
going to be performed if needed.  
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